IVL Swedish Environmental Research Institute

ivl.se
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
REWARDHeat PESTLE Analysis
IVL Swedish Environmental Research Institute.
IVL Swedish Environmental Research Institute.
IVL Swedish Environmental Research Institute.
IVL Swedish Environmental Research Institute.
Show others and affiliations
2022 (English)Report (Other academic)
Abstract [en]

In this deliverable, factors impacting effective replication of Low Temperature (LT) District Heating and Cooling (DHC) networks with Low Temperature Heat (LTH) and Renewable Energy (RE) sources integration are analyzed. A PESTLE (Political, Economic, Social, Technical, Legal and Environmental) analysis is performed for seven European countries, which host one or more REWARDHeat demonstrators.The PESTLE analysis was performed in a three-step process. The first step was data collection for each of the components included in the PESTLE analysis through literature reviews, interviews with the demo-sites, surveys distributed to and answered by the customers of the existing DH systems and energy systems modelling using the TIMES (The Integrated MARKAL-EFOM System) model generator for understanding the environmental impact long term. The second step was to identify and prioritize key factors identified for each of the PESTLE components. The third step was to rate the identified key factors together with experts from each demo-site country. The key factors were rated either as a barrier (major or minor) or as an opportunity (major or minor).Overall, the results of the PESTLE analysis show that there are more opportunities than barriers for the replication of LTDHC networks in the investigated countries. Opportunities mainly arise from the ambitious political goal of the EU to become climate-neutral by 2050. The EU goal leads to ambitious national targets for the Heating and Cooling (HC) sectors, which are still greatly dependent on the use of fossil fuels. Positive customers’ opinions and the current characteristics of the HC sectors in the investigated countries are also identified as opportunities for the development of LTDHC networks. At the country level, Denmark and Sweden are the countries in which conventional DH networks are well-established and it is in these countries the most opportunities for LTDHC can be found. A tradition of investing in large, centralized heat generation plants could however pose a barrier, and a regime shift is therefore necessary. We show that with the development of LTDHC networks, the cost of heat supply in the investigated HC sectors can decrease, if compared to the development without LTDHC.

From the environmental perspective, the development of LTDHC networks and utilization of LTH and RE sources is shown to result in fuel savings and lowered air pollutant emissions in all the demo-site countries, except for Denmark in which insignificant increase in specific primary energy use per unit of generated heat can be expected.The lack of targeted state-based financial support for developing innovative HC networks is identified as one of the main barriers for the replication of the REWARDHeat solutions in most of the countries. The likely reason for this is deemed to be a lack of awareness and understanding about the LTDHC concept among politicians and decision makers. Hence, more knowledge needs to be generated about the concept, for example through demonstration projects such as REWARDHeat. Another main barrier is that LTDHC is currently only suitable for a small share of the building stock, mainly new or refurbished buildings. Table 1 shows overview of the PESTLE analysis results for each of the investigated countries. The values “3” and “4” on the green background represent opportunities (minor and major, respectively) and the values “1” and “2” represent barriers (major and minor, respectively). The results from the energy system modelling, which served as a basis for analyzing environmental key factors as well as the Specific cost of heat economic factor, are also briefly presented in this deliverable and are available on an interactive webpage accessible from the project official website (www.rewardheat.eu).

Place, publisher, year, edition, pages
Stockholm: IVL Svenska Miljöinstitutet AB , 2022.
Series
E report ; E0049
Keywords [en]
#energy #districtenergy #district heating #excessheat #renewableenergy
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:ivl:diva-4148ISBN: 978-91-7883-466-2 (electronic)OAI: oai:DiVA.org:ivl-4148DiVA, id: diva2:1731314
Funder
EU, Horizon EuropeAvailable from: 2023-01-26 Created: 2023-01-26 Last updated: 2023-01-30

Open Access in DiVA

fulltext(4397 kB)679 downloads
File information
File name FULLTEXT01.pdfFile size 4397 kBChecksum SHA-512
2bea549a914529c75c045a05cc7b720c7a0e679884e48920fb0aabd8be369bf08b858147bf9c79b8102bbc51e564a9e6e3b128432cd25a469bfff1acf0e17aa8
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Fransson, NathalieSandvall, AkramKarlsson, KennethUnluturk, BurcuRomanchenko, DmytroAndersson, RasmusAurora, Övereng
By organisation
IVL Swedish Environmental Research Institute
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 679 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 3097 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf