IVL Swedish Environmental Research Institute

ivl.se
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile
IVL Swedish Environmental Research Institute.
IVL Swedish Environmental Research Institute.
Show others and affiliations
2020 (English)In: Environmental Monitoring & Assessment, ISSN 0167-6369, E-ISSN 1573-2959, Vol. 192Article in journal (Refereed) Published
Abstract [en]

Integration of low-cost air quality sensors with the internet of things (IoT) has become a feasible approach towards the development of smart cities. Several studies have assessed the performance of low-cost air quality sensors by comparing their measurements with reference instruments. We examined the performance of a low-cost IoT particulate matter (PM10 and PM2.5) sensor in the urban environment of Santiago, Chile. The prototype was assembled from a PM10–PM2.5 sensor (SDS011), a temperature and relative humidity sensor (BME280) and an IoT board (ESP8266/Node MCU). Field tests were conducted at three regulatory monitoring stations during the 2018 austral winter and spring seasons. The sensors at each site were operated in parallel with continuous reference air quality monitors (BAM 1020 and TEOM 1400) and a filter-based sampler (Partisol 2000i). Variability between sensor units (n = 7) and the correlation between the sensor and reference instruments were examined. Moderate inter-unit variability was observed between sensors for PM2.5 (normalized root-mean-square error 9–24%) and PM10 (10–37%). The correlations between the 1-h average concentrations reported by the sensors and continuous monitors were higher for PM2.5 (R2 0.47–0.86) than PM10 (0.24–0.56). The correlations (R2) between the 24-h PM2.5 averages from the sensors and reference instruments were 0.63–0.87 for continuous monitoring and 0.69–0.93 for filter-based samplers. Correlation analysis revealed that sensors tended to overestimate PM concentrations in high relative humidity (RH > 75%) and underestimate when RH was below 50%. Overall, the prototype evaluated exhibited adequate performance and may be potentially suitable for monitoring daily PM2.5 averages after correcting for RH.

Place, publisher, year, edition, pages
2020. Vol. 192
Identifiers
URN: urn:nbn:se:ivl:diva-3331DOI: 10.1007/s10661-020-8118-4OAI: oai:DiVA.org:ivl-3331DiVA, id: diva2:1554917
Note
A-rapport, A2469Available from: 2021-05-17 Created: 2021-05-17

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Hallgren, FredrikLindén, Jenny
By organisation
IVL Swedish Environmental Research Institute
In the same journal
Environmental Monitoring & Assessment

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf