IVL Swedish Environmental Research Institute

ivl.se
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using phenotype microarrays in the assessment of the antibioticsusceptibility profile of bacteria isolated from wastewaterin on-site treatment facilities
IVL Swedish Environmental Research Institute.
2018 (English)In: Folia Microbiol., Vol. 62, no 6Article in journal (Refereed) Published
Abstract [en]

Antibiotic resistance was identified by the World Health Organization as a major problem in terms of the environment and human and animal health (WHO 2014). Antibiotics get into soil and water, mainly through wastewater treatment plant effluents, leakage from waste storage containers, agricultural waste, and application of biosolids to fields.

The scope of the study was to apply Phenotype Biolog MicroArray (PM) technology to test the antibiotic sensitivity of the bacterial strains isolated from on-site wastewater treatment facilities. In the first step of the study, the percentage values of resistant bacteria from total heterotrophic bacteria growing on solid media supplemented with various antibiotics were determined. In the untreated wastewater, the average shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria were 53, 56, and 42%, respectively. Meanwhile, the shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria in the treated wastewater were 39, 33, and 29%, respectively.

To evaluate the antibiotic susceptibility of the bacteria present in the wastewater, using the phenotype microarrays (PMs), the most common isolates from the treated wastewater were chosen: Serratia marcescens ss marcescens, Pseudomonas fluorescens, Stenotrophomonas maltophilia, Stenotrophomonas rhizophila, Microbacterium flavescens, Alcaligenes faecalis ss faecalis, Flavobacterium hydatis, Variovorax paradoxus, Acinetobacter johnsonii, and Aeromonas bestiarum. The strains were classified as multi-antibiotic-resistant bacteria. Most of them were resistant to more than 30 antibiotics from various chemical classes. Phenotype microarrays could be successfully used as an additional tool for evaluation of the multi-antibiotic resistance of environmental bacteria and in preliminary determination of the range of inhibition concentration.

Place, publisher, year, edition, pages
2018. Vol. 62, no 6
Identifiers
URN: urn:nbn:se:ivl:diva-3689OAI: oai:DiVA.org:ivl-3689DiVA, id: diva2:1572899
Note
A-rapport, A2294Available from: 2021-06-24 Created: 2021-06-24

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Ejhed, Heléne
By organisation
IVL Swedish Environmental Research Institute

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf