IVL Swedish Environmental Research Institute

ivl.se
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transport and Behavior of Microplastics Emissions From Urban Sources in the Baltic Sea
IVL Swedish Environmental Research Institute.
Show others and affiliations
2020 (English)In: Frontiers in Environmental Science, E-ISSN 2296-665X, Vol. 8Article in journal (Refereed) Published
Abstract [en]

Urban sources, wastewater treatment plants (WWTPs), untreated wastewater (not connected to WWTPs), and especially combined sewer overflow systems (CSS) including stormwater are major pathways for microplastics in the aquatic environment. We compile microplastics emission data for the Baltic Sea region, calculate emissions for each pathway and develop emission scenarios for selected polymer types, namely polyethylene (PE)/polypropylene (PP) and the polyester polyethylene terephthalate (PET). PE/PP and PET differ with respect to their density and can be regarded as representative for large groups of polymers. We consider particles between 20–500 μm with varying shapes. The emission scenarios serve as input for 3D-model simulations, which allow us to estimate transport, behavior, and deposition in the Baltic Sea environment.

According to our model results, the average residence time of PET and PE/PP in the Baltic Sea water body is about 14 days. Microplastics from urban sources cause average concentrations of 1.4 PE/PP (0.7 PET) particles/m2 sea surface (20–500 μm size range) in the Baltic Sea during summer. Average concentrations of PET, resulting from urban sources, at the sea floor are 4 particles/m2 sediment surface during summer. Our model approach suggests that accumulation at the shoreline is the major sink for microplastic with annual coastal PE/PP and PET accumulation rates of up to 108 particles/m each near emission hot-spots and in enclosed and semi-closed systems. All concentrations show strong spatial and temporal variability and are linked to high uncertainties.

The seasonality of CSS (including stormwater) emissions is assessed in detail. In the south-eastern Baltic, emissions during July and August can be up to 50% of the annual CSS and above 1/3 of the total annual microplastic emissions. The practical consequences especially for monitoring, which should focus on beaches, are discussed. Further, it seems that PET, PE/PP can serve as indicators to assess the state of pollution.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2020. Vol. 8
Keywords [en]
microplastic stormwater wastewater treatment plant baltic sea
Keywords [sv]
mikroplast dagvatten reningsverk bräddning östersjön
National Category
Environmental Sciences
Research subject
Water
Identifiers
URN: urn:nbn:se:ivl:diva-3932DOI: 10.3389/fenvs.2020.579361OAI: oai:DiVA.org:ivl-3932DiVA, id: diva2:1643965
Note

A2592

Available from: 2022-03-11 Created: 2022-03-11 Last updated: 2022-03-11

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
By organisation
IVL Swedish Environmental Research Institute
In the same journal
Frontiers in Environmental Science
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf