IVL Swedish Environmental Research Institute

ivl.se
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A comparison of emissions from ethanol and petrol fuelled cars. Health risk assessment for Västra Götaland.
IVL Swedish Environmental Research Institute.
IVL Swedish Environmental Research Institute.
IVL Swedish Environmental Research Institute.
Show others and affiliations
2010 (English)Report (Other academic)
Abstract [sv]

This report is only available in Swedish.

Abstract [en]

Facing the problems with global warming and the diminishing supplies of oil, alternative fuels are becoming more and more important for road traffic. One fuel that has been used for several years is ethanol (E85). The main discussion points regarding the environmental performance for ethanol as a fuel are related to the production. However, there are also some notable differences in the emissions between E85 and petrol fuelled vehicles. This relates to some extent to the emissions of nitrogen oxides (NOX) and particulate matter (PM) but mainly to the composition of the emitted organic compounds.These differences in emissions will potentially give different impacts on health and on the environment. This can be both through risks linked to the primary emissions and to secondary products formed in the atmosphere. In order to assess the health risks it is necessary to calculate the emissions in space and time, describe the dispersion and chemical reactions taking place in the atmosphere and to calculate the exposure to humans.In the present study two fuel scenarios for passenger cars are studied; one where the cars with Otto engines run on petrol and one where they run on E85. Two emission scenarios for 2020 are constructed and dispersion modelling is applied to obtain the human exposure to key pollutants. The dispersion modelling is performed with the EMEP model for extended Europe and the data obtained are used as boundary conditions for the model for the Västra Götaland Region. In the latter, detailed traffic and emissions scenarios are used together with the TAPM model to obtain concentration levels and population exposure. The differences in health impacts are then assessed.The differences in emission factors reflect in differences in emissions. The emission calculations for all Swedish road traffic show a decrease for the E85 scenario relative to the petrol scenario of 6.5% for NOX, 3.4% for PM2.5, 67% for benzene. For acetaldehyde there is an increase of 770%. The differences obtained from the TAPM modelling show decreased levels of NOX, ozone and benzene with E85 and increased levels of acetaldehyde. For the latter the increase may be up to 80%, while NOX and ozone show decreases of up to a few per cent and a few tenths of per cent, respectively. The health risk assessment shows decreased health risks in the E85 scenario relative the all-petrol scenario, due to the decreased NOX exposure, correlated with both preterm deaths and asthma. However, NOX may be mainly an indicator of unmeasured causal exhaust components in the epidemiological studies and thus the exposure-response functions for NOX may not be applicable in the present case where there is a difference in NOX exposure but not necessarily a difference in exposure to other exhaust components normally associated with NOX.  Smaller effects are expected from the changes in ozone, acetaldehyde, PM2.5 and benzene exposure. The overall difference is about 1.6 preterm deaths per year for the Västra Götaland Region, with lower values for the E85 scenario, when the uncertain differences due to the differences in NOX exposure are not considered.

Place, publisher, year, edition, pages
IVL Svenska Miljöinstitutet, 2010.
Series
B report ; B1962
Keywords [sv]
emissions, dispersion modelling, health risks, E85, ethanol, petrol
Identifiers
URN: urn:nbn:se:ivl:diva-2711OAI: oai:DiVA.org:ivl-2711DiVA, id: diva2:1552155
Available from: 2021-05-05 Created: 2021-05-05 Last updated: 2021-05-27Bibliographically approved

Open Access in DiVA

fulltext(3663 kB)3010 downloads
File information
File name FULLTEXT01.pdfFile size 3663 kBChecksum SHA-512
86cd6fbac6ac51dac2857a936e4e860b28c1ae018578b9c0cf4dc7d32b947436fec74ef082187438803abd62380cb03a9644a0351b22e3f8ce2ed82fbae21e19
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Fridell, ErikMoldanova, JanaTang, LinSjöberg, Karin
By organisation
IVL Swedish Environmental Research Institute

Search outside of DiVA

GoogleGoogle Scholar
Total: 3015 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf