IVL Swedish Environmental Research Institute

ivl.se
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dioxins in atmospheric deposition: comparison of samplers
IVL Swedish Environmental Research Institute.
IVL Swedish Environmental Research Institute.
2018 (English)Report (Other academic)
Abstract [sv]

Persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs /PCDFs) have great potential for atmospheric long-range transport and deposition. The atmosphere is an important pathway for these contaminants to both aquatic and terrestrial environments. The Swedish national monitoring program for organic contaminants in air and precipitation includes, except PCDD/PCDFs, a large number of different substances/group of substances which differ in chemical and physical properties which not only affect their behaviour in the atmosphere and the deposition process but also the requirements on sampling methods used. This leads to great demands on the type of deposition sampler to be used in a monitoring program where the aim is to monitor several different organic substances and compromises are necessary when choosing sampler type.

The sampling program lasted for one year with 4 sampling periods with a sampling duration of 3 months. This gives results showing seasonal variation and the opportunity to estimate the annual deposition.

The overall results from this study show that: • Differences in measured deposition fluxes were found between the two samplers with a variation in magnitude between different sampling occasions. A greater amount of dioxins/furans in deposition was measured with the MONAS sampler at three out of the four periods. • The annual dioxin/furan deposition was about 25 % higher with the MONAS sampler compared to the IVL sampler, when LOD (limit of detection) was replaced with zero for all non-detected congeners in the sum of the congeners. • The results from the sampling comparison for the two samplers gave a difference of 25% on annual basis which should be assessed in relation to the given analytical uncertainty which was +/-29% for all samples.

The results found here are in agreement with other comparison studies when deposition samplers with different sampling characteristics were used (Brorström-Lundén, 1995). From this and other studies we can conclude that sampling of dioxins/furans as well as for other POPs gives different deposition fluxes when using samplers with different sampling characteristics. The collection efficiency differs not only among e.g. different congeners but also between sampling occasions which differ in ambient conditions such as amounts of precipitation, ambient air temperature and atmospheric particle concentrations. The choice of the type of deposition sampler to be used must therefore depend on the purpose of the measurements and the results should be discussed in relation to the sampling methods.

Abstract [en]

Persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs /PCDFs) have great potential for atmospheric long-range transport and deposition. The atmosphere is an important pathway for these contaminants to both aquatic and terrestrial environments. The Swedish national monitoring program for organic contaminants in air and precipitation includes, except PCDD/PCDFs, a large number of different substances/group of substances which differ in chemical and physical properties which not only affect their behaviour in the atmosphere and the deposition process but also the requirements on sampling methods used. This leads to great demands on the type of deposition sampler to be used in a monitoring program where the aim is to monitor several different organic substances and compromises are necessary when choosing sampler type.

The sampling program lasted for one year with 4 sampling periods with a sampling duration of 3 months. This gives results showing seasonal variation and the opportunity to estimate the annual deposition.

The overall results from this study show that: • Differences in measured deposition fluxes were found between the two samplers with a variation in magnitude between different sampling occasions. A greater amount of dioxins/furans in deposition was measured with the MONAS sampler at three out of the four periods. • The annual dioxin/furan deposition was about 25 % higher with the MONAS sampler compared to the IVL sampler, when LOD (limit of detection) was replaced with zero for all non-detected congeners in the sum of the congeners. • The results from the sampling comparison for the two samplers gave a difference of 25% on annual basis which should be assessed in relation to the given analytical uncertainty which was +/-29% for all samples.

The results found here are in agreement with other comparison studies when deposition samplers with different sampling characteristics were used (Brorström-Lundén, 1995). From this and other studies we can conclude that sampling of dioxins/furans as well as for other POPs gives different deposition fluxes when using samplers with different sampling characteristics. The collection efficiency differs not only among e.g. different congeners but also between sampling occasions which differ in ambient conditions such as amounts of precipitation, ambient air temperature and atmospheric particle concentrations. The choice of the type of deposition sampler to be used must therefore depend on the purpose of the measurements and the results should be discussed in relation to the sampling methods.

Abstract [sv]

The overall aim of this study is to compare two different types of deposition samplers for sampling of PCDDs/PCDFs. These two samplers, the IVL-sampler and the MONAS sampler, have quite different sampling characteristics. In addition, brominated dioxins/furans were included in the measurements in order to get an idea of their occurrence in deposition at the Swedish west coast. Den här rapporten finns endast på engelska. Svensk sammanfattning finns i rapporten.

Place, publisher, year, edition, pages
IVL Svenska Miljöinstitutet, 2018.
Series
B report ; B2300
Identifiers
URN: urn:nbn:se:ivl:diva-2875ISBN: 978-91-88787-33-0 OAI: oai:DiVA.org:ivl-2875DiVA, id: diva2:1552321
Available from: 2021-05-05 Created: 2021-05-05 Last updated: 2021-05-18Bibliographically approved

Open Access in DiVA

fulltext(1076 kB)51 downloads
File information
File name FULLTEXT01.pdfFile size 1076 kBChecksum SHA-512
07e547b25dba642e2e5d8bf78b9fb50bc019c3f8d27d6b15cfe874a8edcd93a47dc89df1d5b4454d3e4e29829fb76dec6a50fa0f45e0365a5b1cad4f56668ed0
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Brorström-Lundén, EvaHansson, Katarina
By organisation
IVL Swedish Environmental Research Institute

Search outside of DiVA

GoogleGoogle Scholar
Total: 51 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 95 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf