IVL Swedish Environmental Research Institute

ivl.se
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe
IVL Swedish Environmental Research Institute.
IVL Swedish Environmental Research Institute.
2018 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 576, p. 22–35-Article in journal (Refereed) Published
Abstract [en]

In northern Europe there has been a re-distribution in the hourly ozone concentrations during 1990-2015. The highest concentrations during summer daytime hours have decreased while the summer night-time and winter day- and night-time concentrations have increased. The yearly maximum 8-h mean concentrations ([O3]8h,max), a metric used to assess ozone impacts on human health, have decreased significantly during 1990-2015 at four out of eight studied sites in Fennoscandia and northern UK.

Also the annual number of days when the yearly [O3]8h,max exceeded the EU Environmental Quality Standard (EQS) target value of 60ppb has decreased. In contrast, the number of days per year when the yearly [O3]8h,max exceeded 35ppb has increased significantly at two sites, while it decreased at one far northern site. [O3]8h,max is predicted not to exceed 60ppb in northern UK and Fennoscandia after 2020. However, the WHO EQS target value of 50ppb will still be exceeded. The AOT40 May-July and AOT40 April-September metrics, used for the protection of vegetation, have decreased significantly at three and four sites, respectively.

The EQS for the protection of forests, AOT40 April-September 5000ppbh, is projected to no longer be exceeded for most of northern Europe sometime before the time period 2040-2059. However, if the EQS is based on Phytotoxic Ozone Dose (POD), POD1, it may still be exceeded by 2050. The increasing trend for low and medium range ozone concentrations in combination with a decrease in high concentrations indicate that a new control strategy, with a larger geographical scale than Europe and including methane, is needed for ozone abatement in northern Europe.

Place, publisher, year, edition, pages
2018. Vol. 576, p. 22–35-
Identifiers
URN: urn:nbn:se:ivl:diva-3691OAI: oai:DiVA.org:ivl-3691DiVA, id: diva2:1572901
Note
A-rapport, A2292Available from: 2021-06-24 Created: 2021-06-24

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Karlsson, Per ErikPihl-Karlsson, Gunilla
By organisation
IVL Swedish Environmental Research Institute
In the same journal
Science of the Total Environment

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf