IVL Swedish Environmental Research Institute

ivl.se
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of exposure to phthalate esters and DINCH in urine and nails from a Norwegian study population
IVL Swedish Environmental Research Institute.
IVL Swedish Environmental Research Institute.
IVL Swedish Environmental Research Institute.
2016 (English)In: Environmental Research, ISSN 0013-9351, E-ISSN 1096-0953, no 151, p. 80-90Article in journal (Refereed) Published
Abstract [en]

Phthalate esters (PEs) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) used as additives innumerous consumer products are continuously released into the environment, leading to subsequenthuman exposure which might cause adverse health effects. The human biomonitoring approach allows thedetection of PEs and DINCH in specific populations, by taking into account all possible routes of exposure(e.g. inhalation, transdermal and oral) and all relevant sources (e.g. air, dust, personal care products, diet).

We have investigated the presence of nine PE and two DINCH metabolites and their exposure determi-nants in 61 adult residents of the Oslo area (Norway). Three urine spots andfingernails were collectedfrom each participant according to established sampling protocols. Metabolite analysis was performed byLC-MS/MS. Metabolite levels in urine were used to back-calculate the total exposure to their correspondingparent compound. The primary monoesters, such as monomethyl phthalate (MMP, geometric mean89.7 ng/g), monoethyl phthalate (MEP, 104.8 ng/g) and mono-n-butyl phthalate (MnBP, 89.3 ng/g) wereobserved in higher levels in nails, whereas the secondary bis(2-ethylhexyl) phthalate (DEHP) and DINCHoxidative metabolites were more abundant in urine (detection frequency 84–100%). The estimated daily intakes of PEs and DINCH for this Norwegian population did not exceed the established tolerable dailyintake and reference doses, and the cumulative risk assessment for combined exposure to plasticizers withsimilar toxic endpoints indicated no health concerns for the selected population.

We found a moderatepositive correlation between MEP levels in 3 urine spots and nails (range: 0.56–0.68). Higher frequency ofpersonal care products use was associated with greater MEP concentrations in both urine and nail samples.Increased age, smoking, wearing plastic gloves during house cleaning, consuming food with plasticpackaging and eating with hands were associated with higher levels in urine and nails for some of themetabolites. In contrast, frequent hair and hand washing was associated with lower urinary levels ofmonoisobutyl phthalate (MiBP) and mono(2-ethyl-5-hydroxyhexyl) phthalate (5-OH-MEHP), respectively.

Place, publisher, year, edition, pages
2016. no 151, p. 80-90
Identifiers
URN: urn:nbn:se:ivl:diva-3774OAI: oai:DiVA.org:ivl-3774DiVA, id: diva2:1572985
Note
A-rapport, A2220Available from: 2021-06-24 Created: 2021-06-24

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Giovanoulis, GeorgiosMagnér, Jörgen
By organisation
IVL Swedish Environmental Research Institute
In the same journal
Environmental Research

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf