The material flows for end-of-life (EOL) lithium-ion batteries (LIBs) in Europe are analysed for the years 2022, 2026, and 2030 and the facility location is optimized for select hydrometallurgical material recovery technologies. It details the growing significance of EOL LIBs as a source for new battery materials, projecting an increase in volumes through 2030. The report is divided into two parts:
Mapping (Part 1): This section involves converting battery scrap, new cells, and black mass into cell-weight equivalents for comparison in material flow analysis. It utilizes Sankey charts and geographical maps to display the significant increase in both the number of actors and the aggregated volumes in 2022, 2026, and 2030.
Optimization (Part 2): This part focuses on optimizing the network setup for material recovery facilities, aiming to minimize costs and CO2 emissions. The study evaluates processing capacities and the impact of different network setups on monetary costs and CO2 emissions. The potential savings from optimization are highlighted, with the study indicating significant monetary and environmental benefits if data is properly leveraged.
The report underscores the potential for substantial monetary and environmental savings through effective optimization and utilization of available data in the management of EOL lithium-ion batteries in the EU region.