IVL Swedish Environmental Research Institute

ivl.se
Change search
Refine search result
1 - 34 of 34
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Brynolf, Selma
    et al.
    Chalmers.
    Grahn, Maria
    Chalmers.
    Hansson, Julia
    IVL Swedish Environmental Research Institute.
    Korberg, Andrei David
    Aalborg University.
    Malmgren, Elin
    Chalmers.
    Sustainable fuels for shipping2022In: Sustainable Energy Systems on Ships, p. 403-428Article in journal (Refereed)
  • 2. Brynolf, Selma
    et al.
    Hansson, Julia
    Anderson, James E
    Skov, Iva Ridjan
    Wallington, Timothy J
    Grahn, Maria
    Korberg, Andrei David
    Malmgren, Elin
    Taljegård, Maria
    Review of electrofuel feasibility—prospects for road, ocean, and air transport2022In: Progress in Energy, E-ISSN 2516-1083, Vol. 4, no 4, p. 042007-042007Article in journal (Refereed)
    Abstract [en]

    To meet climate targets the emissions of greenhouse gases from transport need to be reduced considerably.

    Electrofuels (e-fuels) produced from low-CO2 electricity, water, and carbon (or nitrogen) are potential low-climate-impact transportation fuels. The purpose of this review is to provide a technoeconomic assessment of the feasibility and potential of e-fuels for road, ocean, and air transport.

    The assessment is based on a review of publications discussing e-fuels for one or more transport modes. For each transport mode, (a) e-fuel options are mapped, (b) cost per transport unit (e.g. vehicle km) and carbon abatement costs are estimated and compared to conventional options, (c) prospects and challenges are highlighted, and (d) policy context is described.

    Carbon abatement costs for e-fuels (considering vehicle cost, fuel production and distribution cost) are estimated to be in the range 110–1250 € tonne−1 CO2 with e-gasoline and e-diesel at the high end of the range.

    The investigated combined biofuel and e-fuels production pathways (based on forest residues and waste) are more cost-competitive than the stand-alone e-fuel production pathways, but the global availability of sustainable biomass is limited making these pathways more constrained.

    While the potential for e-fuels to decarbonize the transport sector has been discussed extensively in the literature, many uncertainties in terms of production costs, vehicle costs and environmental performance remain. It is too early to rule out or strongly promote particular e-fuels for different transport modes. F

    or e-fuels to play a significant role in transportation, their attractiveness relative to other transport options needs to be improved. Incentives will be needed for e-fuels to be cost-effective and increased clarity on how e-fuels are linked to existing policies is needed.

  • 3. Dahal, Karna
    et al.
    Brynolf, Selma
    Xisto, Carlos
    Hansson, Julia
    Grahn, Maria
    Grönstedt, Tomas
    Lehtveer, Mariliis
    Techno-economic review of alternative fuels and propulsion systems for the aviation sector2021In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690Article in journal (Refereed)
    Abstract [en]

    Substitution of conventional jet fuel with low-to zero-carbon-emitting alternative aviation fuels is vital for meeting the climate targets for aviation. It is important to understand the technical, environmental, and eco-nomic performance of alternative aviation fuels and prospective engine and propulsion technologies for future aircraft. This study reviews alternative fuels and propulsion systems, focusing on costs and technical maturity, and presents conceptual aircraft designs for different aviation fuels.

    The cost review includes minimum jet fuel selling price (MJFSP) for alternative aviation fuels. Direct operating cost (DOC) is estimated based on the con-ceptual aircraft designs and the reviewed MJFSP. The DOCs for bio-jet fuel (5.0–9.2 US cent per passenger- kilometer (¢/PAX/km)), fossil and renewable liquefied hydrogen (5.9–10.1 and 8.1–23.9 ¢/PAX/km, respec-tively), and electro-methane and electro-jet fuel (5.6–16.7 and 9.2–23.7 ¢/PAX/km, respectively) are higher than for conventional jet fuel (3.9–4.8 ¢/PAX/km) and liquefied natural gas (4.2–5.2 ¢/PAX/km). Overall, DOC of renewable aviation fuels is 15–500 % higher than conventional jet fuels. Among the bio-jet fuels, hydroprocessed esters and fatty acids (23–310 $/GJ) and alcohol-to-jet (4–215 $/GJ) pathways offer the lowest MJFSPs. The implementation of alternative fuels in existing aircraft engines and the design and development of appropriate propulsion systems and aircraft are challenging. The overall cost is a key factor for future implementation. Bio-jet fuel is most promising in the near term while hydrogen and electrofuels in the long term. The level of carbon tax on fossil jet fuels needed for the latter options to be competitive depend on the hydrogen production cost. 

  • 4.
    Fagerström, Anton
    IVL Swedish Environmental Research Institute.
    Dispatchable electricity production in the North Harbour area in Malmö via renewable gases2021Report (Other academic)
    Abstract [en]

    The main purpose of this project has been to identify and discuss a concept for the North Harbor area in Malmö on how increased dispatchable electricity production and Power-to-gas is made possible through sector coupling of existing and additional infrastructure. This has meant that a cluster of relevant stakeholders has been created, both those who have activities in the area and others who in one way or another are considered important for the main purpose.

    The report describes challenges in the electricity supply in Malmö and the North Harbor area. Background is given around the concept of sector coupling, types of sector couplings, the concept Power-to-X and other related projects and efforts. The current situation is described based on Malmö's and the port's history and continues with a description of the current infrastructure and mass and energy flows. From there, possible sector couplings and future access to power and electricity are prepared. The question - why sector coupling of the electricity grid will be needed is seen in the Malmö context and how an increase in electricity demand can result in periods of low and high electricity prices is described.

    A possible transformation of the area is depicted for 2030 and 2045 with additional sector couplings in place and active, both for a high and low electricity price. Finally, the report concludes with a look at further optimization of the system and how the results from the project can continue on a larger scale.

    Download full text (pdf)
    fulltext
  • 5.
    Fagerström, Anton
    et al.
    IVL Swedish Environmental Research Institute.
    Abdelaziz, Omar
    Poulikidou, Sofia
    Lewrén, Adam
    Hulteberg, Christian
    Wallberg, Ola
    Rydberg, Tomas
    Economic and Environmental Potential of Large-Scale Renewable Synthetic Jet Fuel Production through Integration into a Biomass CHP Plant in Sweden2022In: Energies, E-ISSN 1996-1073, Vol. 15, no 3, p. 1114-1114Article in journal (Refereed)
  • 6.
    Fransson, Nathalie
    IVL Swedish Environmental Research Institute.
    Customers' perspective on REWARDHeat solutions2022Report (Other academic)
    Abstract [en]

    In this deliverable, the customers’ perspective on the REWARDHeat solutions is in focus. A survey was conducted with both professional customers and end-users in connection to the REWARDHeat demonstration sites in seven different countries (Denmark, Croatia, Germany, France, Italy, Sweden and Netherlands).Customers comfort requirements, flexibility & temporality of the services, willingness to pay for green energy and other aspects for increased end-user engagement in the H&C solution have been addressed. The district heating addressed in the survey offers one or several of the following services: space heating, cooling and domestic hot water.63 responses were collected, 25 from professional customers and 38 from end-users. Respondents think that temperature is the most important aspect of indoor climate. To 51% of respondents the most important indoor climate factor is indoor temperature and to another 25% an evenly distributed temperature is the most important. There is a flexibility in when the services in the district heating offer are more and less important during the day according to 84% of respondents. Only 16% of respondents consider all services to be equally important throughout the day. Domestic hot water is the service respondents are the least flexible about, hot water is considered to be equally important throughout the day according to 48% of respondents. There is further a flexibility in which rooms are more and less important to maintain a comfortable indoor climate.

    The most important rooms where a comfortable indoor climate must be maintained are the bathroom, dining room and living room. Less important rooms are the garage (71% of respondents answered that the room is less important) and the basement (65%), followed by the bedroom (41%). The next generation district energy solutions, such as the REWARDHeat solutions, have competitive advantages compared to other heating solutions in being able to match customers comfort requirements more closely. Increased control could for example enable different temperature levels in different rooms. Comparison of the customers comfort requirements with national legislation on indoor climate yields that all countries need improvement to avoid reducing the efficiency, health and comfort of occupants. Especially the customers’ thermal comfort needs to be better guarded against high temperatures.The cost of heating and cooling is important or very important to 89% of respondents and 94% want to be able to impact the cost. 81% of respondents perceive energy as a commodity and are prone to demand such pricing schemes. 75% of respondents prefer that someone else managed the maintenance of the H&C equipment. The main risk perceived by 32% of respondents towards increasing the level of servicification is a more expensive bill and foreseen benefits are increased comfort (17%) and a carefree contract (21%). 17% of respondents did not perceive any benefits and 27% did not know. Customers engagement in the energy solutions will require more information to create a pull from the market for increased servicification and for customers to develop towards becoming energy citizens. 56% of the respondents display a willingness to pay for a greener heat supply. 18% are willing to pay more than 6% more and 38% would be willing to pay a 1-5% higher price. For a more rapid energy transition, incentives for customers to actively choose green energy are needed.

    Download full text (pdf)
    fulltext
  • 7.
    Fransson, Nathalie
    et al.
    IVL Swedish Environmental Research Institute.
    Lygnerud, Kristina
    Särnbratt, Mirjam
    IVL Swedish Environmental Research Institute.
    Business models at REWARDHeat demonstrators2022Report (Other academic)
    Abstract [en]

    In this report, business models have been developed for the demonstration sites in the REWARDHeat project with the purpose to uncover lessons learned about the shift in business logic when transitioning from conventional DH business models to low temperature schemes. The business models have been developed in an iterative process with the DH companies participating in the project, during the first three years of its elaboration. A particular focus has been placed on the innovative component of the business models, i.e., the green value creation and its value to different stakeholders. Selling heat as a service (instead of as a commodity) has been the starting point in developing the business models. Contractual considerations and ownership forms have been analyzed for each of the demonstration sites.

    The findings enable the project to respond to the main questions of the deliverable: How does the REWARDHeat business model experiences differ from a conventional DH business model and what can we learn from the transition to low temperature DH solutions?The aggregated results show that the demo sites focus on technical innovations but seven out of 10 also develop business innovations by increasing the service offer to customers. The business logic of low temperature DH makes it more efficient to develop the business innovation simultaneously with the technical innovation.The lack of EU legislation on waste heat recovery is causing uncertainties. Investors need to know whether the investment is considered sustainable. The value of green is created at all demo sites and valued by most stakeholders. It is however only exploited in the business model at three demo sites.Offering more advanced service to customers necessitates a shift towards being more customer oriented.

    By assuming ownership and maintenance of the substation at the customer site, the boundary condition is shifted to inside the customers’ buildings. It creates a value of carefreeness for the customer as the DH company assumes more risk. The DH company gains from increased control of the network, something increasingly important in low temperature solutions. Three demo sites are offering advanced services resulting in a co-dependent relationship with the customer where the collaboration requires integration of processes.The main change in the business model canvas for low temperature installations, in comparison to conventional DH, is the necessity to manage relationships. Relationship building is required for new partnerships, due to multiple decentralized heat sources, and for the prosumer customer segment, instated from waste heat and renewable energy integration. As decentralized energy sources are introduced to the DH network the distribution network becomes more important and large-scale centralized production plants less important. The business logic of low temperature solutions is more on circulating available resources, utilizing the available flexibility in the distribution network, and implementing more advanced control to manage the system efficiently.

    Download full text (pdf)
    fulltext
  • 8.
    Fransson, Nathalie
    et al.
    IVL Swedish Environmental Research Institute.
    Sandvall, Akram
    IVL Swedish Environmental Research Institute.
    Karlsson, Kenneth
    IVL Swedish Environmental Research Institute.
    Unluturk, Burcu
    IVL Swedish Environmental Research Institute.
    Romanchenko, Dmytro
    IVL Swedish Environmental Research Institute.
    Andersson, Rasmus
    IVL Swedish Environmental Research Institute.
    Nilsson, Johanna
    Aurora, Övereng
    IVL Swedish Environmental Research Institute.
    Liptow, Christin
    REWARDHeat PESTLE Analysis2022Report (Other academic)
    Abstract [en]

    In this deliverable, factors impacting effective replication of Low Temperature (LT) District Heating and Cooling (DHC) networks with Low Temperature Heat (LTH) and Renewable Energy (RE) sources integration are analyzed. A PESTLE (Political, Economic, Social, Technical, Legal and Environmental) analysis is performed for seven European countries, which host one or more REWARDHeat demonstrators.The PESTLE analysis was performed in a three-step process. The first step was data collection for each of the components included in the PESTLE analysis through literature reviews, interviews with the demo-sites, surveys distributed to and answered by the customers of the existing DH systems and energy systems modelling using the TIMES (The Integrated MARKAL-EFOM System) model generator for understanding the environmental impact long term. The second step was to identify and prioritize key factors identified for each of the PESTLE components. The third step was to rate the identified key factors together with experts from each demo-site country. The key factors were rated either as a barrier (major or minor) or as an opportunity (major or minor).Overall, the results of the PESTLE analysis show that there are more opportunities than barriers for the replication of LTDHC networks in the investigated countries. Opportunities mainly arise from the ambitious political goal of the EU to become climate-neutral by 2050. The EU goal leads to ambitious national targets for the Heating and Cooling (HC) sectors, which are still greatly dependent on the use of fossil fuels. Positive customers’ opinions and the current characteristics of the HC sectors in the investigated countries are also identified as opportunities for the development of LTDHC networks. At the country level, Denmark and Sweden are the countries in which conventional DH networks are well-established and it is in these countries the most opportunities for LTDHC can be found. A tradition of investing in large, centralized heat generation plants could however pose a barrier, and a regime shift is therefore necessary. We show that with the development of LTDHC networks, the cost of heat supply in the investigated HC sectors can decrease, if compared to the development without LTDHC.

    From the environmental perspective, the development of LTDHC networks and utilization of LTH and RE sources is shown to result in fuel savings and lowered air pollutant emissions in all the demo-site countries, except for Denmark in which insignificant increase in specific primary energy use per unit of generated heat can be expected.The lack of targeted state-based financial support for developing innovative HC networks is identified as one of the main barriers for the replication of the REWARDHeat solutions in most of the countries. The likely reason for this is deemed to be a lack of awareness and understanding about the LTDHC concept among politicians and decision makers. Hence, more knowledge needs to be generated about the concept, for example through demonstration projects such as REWARDHeat. Another main barrier is that LTDHC is currently only suitable for a small share of the building stock, mainly new or refurbished buildings. Table 1 shows overview of the PESTLE analysis results for each of the investigated countries. The values “3” and “4” on the green background represent opportunities (minor and major, respectively) and the values “1” and “2” represent barriers (major and minor, respectively). The results from the energy system modelling, which served as a basis for analyzing environmental key factors as well as the Specific cost of heat economic factor, are also briefly presented in this deliverable and are available on an interactive webpage accessible from the project official website (www.rewardheat.eu).

    Download full text (pdf)
    fulltext
  • 9.
    Fransson, Nathalie
    et al.
    IVL Swedish Environmental Research Institute.
    Särnbratt, Mirjam
    IVL Swedish Environmental Research Institute.
    Investor perspectives on hydrogen investments2024Report (Other academic)
    Abstract [en]

    Investment volumes directed to hydrogen projects need to increase drastically for the market to take off. Investors were interviewed for their perspectives on the emerging market, risk management and evaluation criteria applied to hydrogen investments and what needs to be done to attract more investors. The conclusion of the investor interviews is that hydrogen investments are perceived as high-risk investments and that investors that are able to invest in hydrogen in this nascent phase are more risk tolerant. The investment is made to learn more about the technology and the main driver is the belief that hydrogen could contribute to achieving necessary greenhouse gas emissions. . Considerable uncertainty surrounds the hydrogen investments of today, making it difficult for investors to approach the investment case in the same way as they do the more established technologies.  The informants therefore requested a more predictable and stable policy landscape to accelerate hydrogen investments.

    Download full text (pdf)
    fulltext
  • 10.
    Hansson, Julia
    IVL Swedish Environmental Research Institute.
    Navigating towards low and potential zero carbon marine fuels2020In: The journal of Ocean technologyArticle in journal (Refereed)
    Abstract [en]

    Decarbonized shipping represents a considerable challenge since the GHG emissions are estimated to increase by 2050 in most scenarios. To drastically reduce shipping related GHG emissions, the implementation of energy efficiency measures needs to be supplemented by the introduction of low and potential zero carbon marine fuels. Which, then, are the key factors that influence the prerequisites for different marine fuel options?

  • 11.
    Hansson, Julia
    et al.
    IVL Swedish Environmental Research Institute.
    Davíðsdóttir, Brynhildur
    University of Iceland.
    Fridell, Erik
    IVL Swedish Environmental Research Institute.
    Jivén, Karl
    IVL Swedish Environmental Research Institute.
    Koosup Yum, Kevin
    Sintef Ocean AS.
    Latapí, Mauricio
    University of Iceland.
    Lundström, Helena
    IVL Swedish Environmental Research Institute.
    Parsmo, Rasmus
    IVL Swedish Environmental Research Institute.
    Stenersen, Dag
    Sintef Ocean AS.
    Wimby, Per
    Stena Rederi AB.
    Burgren, Johan
    PowerCell Sweden AB.
    HOPE - Hydrogen fuel cells solutions in Nordic shipping. Project summary: A Nordic Maritime Transport and Energy Research Programme Project2023Report (Other academic)
    Abstract [en]

    The Nordic countries aim for a carbon-neutral Nordic region. Maritime transport is one of the key remaining sectors to decarbonize and is important from a Nordic perspective due to the relatively large Nordic involvement in this industry. The HOPE project addresses how regional shipping in the Nordic region can do the transition to become fossil-free. The project aims at clarifying the potential role of hydrogen based marine solutions in reducing the Nordic greenhouse gas (GHG) emissions. In the centre of the project is a ship concept where a typical RoPax-vessel with operating distances of around 100 nautical miles is designed for including operation with hydrogen as fuel and fuel cells for energy conversion. The overall design of the concept ship is compared with selected other fuel alternatives from a cost perspective. 

    Further, both the conditions for designing such a ship and the consequences are studied. The conditions include technical design and costs of fuel systems and handling, powertrains etc. but also an analysis of barriers and drivers for the realisation of hydrogen solutions for shipping, such as economic, legal, and policy issues. For example, in terms of drivers, policy options needed to accelerate the uptake of hydrogen based marine solutions are assessed. Strategies and the potential of producing these fuels in the Nordic region are also reviewed from a shipping perspective. A realistic potential for uptake of these technologies/fuels by Nordic shipping are assessed and the benefits regarding lower emissions of GHGs and air pollutants are estimated. This report summarizes the assessments made in the HOPE project including main findings. 

    Download full text (pdf)
    fulltext
  • 12.
    Hansson, Julia
    et al.
    Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, Hörselgången 4, 412 96 Gothenburg, Sweden;IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Klugman, Sofia
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Lönnqvist, Tomas
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Elginoz, Nilay
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Granacher, Julia
    Industrial Process and Energy Systems Engineering (IPESE), École Polytechnique Fédérale de Lausanne, 1951 Sion, Switzerland.
    Hasselberg, Pavinee
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Hedman, Fredrik
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Efraimsson, Nora
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Johnsson, Sofie
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Poulikidou, Sofia
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Safarian, Sahar
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Tjus, Kåre
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Biodiesel from Bark and Black Liquor—A Techno-Economic, Social, and Environmental Assessment2023In: Energies, E-ISSN 1996-1073, Vol. 17, no 1, p. 99-99Article in journal (Refereed)
    Abstract [en]

    A techno-economic assessment and environmental and social sustainability assessments ofnovel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill serves as the reference case and large-scale biofuel-production-process integration is explored. Relatively low greenhouse gas emission levels can be obtained for the FT biodiesel (total span: 16–83 g CO2eq/MJ in the assessed EU countries). Actual process configuration and low-carbon electricity are critical for overall performance.

    The site-specific social assessment indicates an overall positive social effect for local community, value chain actors, and society. Important social aspects include (i) job creation potential, (ii) economic development through job creation and new business opportunities, and (iii) health and safety for workers. For social risks, the country of implementation is important. Heat and electricity use are the key contributors to social impacts.The estimated production cost for biobased crude oil is about 13 €/GJ, and it is 14 €/GJ (0.47 €/L or50 €/MWh) for the FT biodiesel. However, there are uncertainties, i.e., due to the low technologyreadiness level of the gasification technologies, especially wet gasification. However, the studiedconcept may provide substantial GHG reduction compared to fossil diesel at a relatively low cost.

  • 13.
    Hansson, Julia
    et al.
    IVL Swedish Environmental Research Institute.
    Nojpanya, Pavinee
    IVL Swedish Environmental Research Institute.
    Ahlström, Johan
    RISE.
    Furusjö, Erik
    RISE.
    Lundgren, Joakim
    LTU.
    Gustavsson Binder, Tobias
    IVL Swedish Environmental Research Institute.
    Costs for reducing GHG emissions from road and air transport with biofuels and electrofuels2023Report (Other academic)
    Abstract [en]

    Renewable fuels for transport are needed to reach future climate targets. However, the potential future role of different biofuels, hydrogen, and electrofuels (produced by electricity, water, and CO2) in different transportation sectors remains uncertain. Increased knowledge about the preconditions for different renewable fuels for road and air transport to contribute to the transformation of the transport sector is needed to ensure the transformation is done in a climate- and cost-effective way. The CO2 abatement cost, i.e., the cost of reducing a certain amount of greenhouse gas (GHG) emissions is central from both a societal and business perspective, the latter partly due to the design of the Swedish reduction obligation system.

    The abatement cost of a specific fuel value chain depends on the fuel production cost and the GHG reduction provided by the fuel. This report provides an updated summary of the CO2 abatement costs for various types of biofuels and electrofuels for road transport and aviation, relevant in a Swedish context. Fuel production costs and GHG performance (well to wheel) for the selected renewable fuel pathways are mapped based on published data. The estimated CO2 abatement cost ranges from -0.37 to 4.03 SEK/kg CO2-equivalent. Methane from anaerobic digestion of sewage sludge and ethanol from fermentation of sugarcane and maize end up with negative CO2 abatement cost given the assumptions made, meaning it is more economically beneficial to use than its fossil counterpart.

    Electrofuels pathways (particularly diesel and aviation fuels) have, on the other hand, relatively high CO2 abatement costs. Also, so-called bio-electrofuels produced from biogenic excess CO2 from biofuel production and electricity linked to biofuel production generally have higher CO2 abatement costs than the corresponding forest biomass-based biofuel pathway. For forest biomass-based biofuels, bio-electrofuels and electrofuels, methanol, and methane pathways in general have somewhat lower CO2 abatement costs than hydrocarbon-based fuels (gasoline, diesel, and aviation fuel).Since most of the assessed renewable fuel pathways achieve substantial GHG emission reduction compared to fossil fuels, the fuel production cost is, in general, more important than the GHG performance to achieve a low CO2 abatement cost. The production cost for fossil fuels also influences the CO2 abatement cost to a large extent. More estimates of cost and GHG performance for gasification of waste-based pathways are needed and for certain pathways under development (e.g., including hydropyrolysis).

    Download full text (pdf)
    fulltext
  • 14.
    Jivén, Karl
    et al.
    IVL Swedish Environmental Research Institute.
    Parsmo, Rasmus
    IVL Swedish Environmental Research Institute.
    Fridell, Erik
    IVL Swedish Environmental Research Institute.
    Hansson, Julia
    IVL Swedish Environmental Research Institute.
    Lundström, Helena
    IVL Swedish Environmental Research Institute.
    Wimby, Per
    Stena Rederi AB.
    Burgren, Johan
    PowerCell Sweden AB.
    Koosup Yum, Kevin
    Sintef Ocean.
    Stenersen, Dag
    Sintef Ocean.
    Concept design and environmental analysis of a fuel cell RoPax vessel - Report in the HOPE (Hydrogen fuel cells solutions in shipping in relation to other low carbon options) project2023Report (Other academic)
    Abstract [en]

    This report includes a ship concept design developed for a RoPax ship (a ferry transporting passengers and goods) with hydrogen fuel cell propulsion for intended operations on the route Frederikshavn (Denmark) to Gothenburg (Sweden). The assessments, performed within the HOPE (Hydrogen fuel cells solutions in shipping in relation to other low carbon options – a Nordic perspective) project, shows that it is technically feasible to build and operate such a ship with existing technology for the studied route between these two Nordic countries. Also, the costs of such a concept are assessed and compared to other fuel options including: battery-electric propulsion, electro-ammonia, electro-methanol, biomass-based methane, or fossil liquefied natural gas (LNG), as well as conventional fossil marine gas oil (MGO).

    The overall result from the comparative analysis of the estimated costs is that the hydrogen fuel cell ship, when assuming current or near future costs for the technology and the hydrogen, is estimated to be some 25 percent more expensive than a conventional fossil fuelled (MGO) RoPax ship (when including costs for emissions in the EU emission trading scheme). However, the cost developments are uncertain. In the case that fuel cell prices, and hydrogen prices, are decreasing, and todays cost levels of emission allowances in the EU emission trading scheme (ETS) increase, the hydrogen fuel cell ship could possibly be operated at lower total costs compared to the MGO fuelled ship.

    A cost benefit analysis was also performed, comparing costs linked to the technical implementation of hydrogen fuel cell solutions in shipping (with a private and social perspective) to benefits in terms of reduced external costs linked to lower emissions and potential subsides. The cost benefit assessment also confirms that the investment from a private perspective is not cost effective and that additional subsidies may be needed for investments in fuel cell hydrogen technology to take place. The cost effectiveness from a social perspective is strongly dependent on values of highly uncertain parameters.

    The impacts of emissions of hydrogen as fuel in a Nordic context were assessed for deployment scenarios for hydrogen and fuel cell solutions in Nordic shipping. There is a considerable potential for emission reductions both in terms of CO2, nitrogen oxides (NOX), sulphur dioxide (SO2) and particulate matter (PM) linked to the implementation of hydrogen and fuel cells in Nordic shipping, particularly in the RoPax segment, representing 30% of total CO2 emissions in 2018. Considering the relatively long lifetime of vessels, investments must be made soon to enable a hydrogen powered shipping fleet in the near future. Since it is currently not economically viable with hydrogen and fuel cells vessels there is need for subsidies and investments in pilots to develop solutions and speed up the process. 

    Download full text (pdf)
    fulltext
  • 15.
    Junestedt, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Emilsson, Erik
    IVL Swedish Environmental Research Institute.
    Indikatorer för en hållbar utveckling inom batterivärdekedjan2023Report (Other academic)
    Abstract [sv]

    Denna studie är en del av det fortsatta regeringsuppdrag som Energimyndigheten, Naturvårdsverket och Sveriges geologiska undersökning (SGU) erhållit som handlar om att utveckla myndighetssamverkan för Sveriges delar av en hållbar europeisk värdekedja för batterier.

    En utveckling mot en mer hållbar batterivärdekedja (BVK) innebär enligt regeringsuppdraget att de problemområden som finns behöver förbättras och de möjligheter som finns förstärkas. Indikatorer kan användas för att följa utvecklingen. Inom detta uppdrag har en litteraturstudie genomförts där indikatorer sammanställts som kan vara tillämpliga för att kunna följa utvecklingen.

    I uppdraget har även ingått att ta ställning till frågor om tänkta användares behov möts bäst av statiska indikatorer, kontextberoende indikatorer eller en kombination av dessa, samt när kvalitativa eller kvantitativa indikatorer är mest ändamålsenliga. Inom olika delar av BVK finns olika problem och möjligheter, vilket beskrivits väl i en rapport från ett tidigare samverkansuppdrag mellan Energimyndigheten, Naturvårdsverket och SGU (Energimyndigheten, 2022).

    Dessa problem och möjligheter tillsammans med de målområden och de kriterier för hållbarhet som sattes upp inom samverkansuppdraget har utgjort en grund för de indikatorer som presenteras i denna studie. BVK är i en relativt ny fas sett till den kontext som avsågs i samverkansuppdraget där litiumjonbatterier (LIB) till elfordon var i fokus. De stora problemområdena kring hållbarhet inom BVK för LIB kopplas till stor del till en brist på hållbarhet vid råmaterialframställningen som idag nästan uteslutande sker utanför Europa.

    Batteriproduktion kräver stora mängder energi, vilket ställer krav på att den energi som nyttjas i så stora delar som möjligt utgörs av förnyelsebar energi. I övrigt handlar produktionssteget (som vid all produktion) om att sikta på en så hög resurs- och materialeffektivitet som möjligt, vilket bland annat ställer krav på längre livslängd, smartare design och utökad spårbarhet.  

    Kompetens och samverkan är två andra viktiga frågor för att få till en positiv hållbar utveckling inom BVK. Kompetens saknas i flera avseenden och i flera delar av BVK och den snabba utveckling som sker och det enorma behovet av batterier enligt flera studier ställer höga krav på en utökad samverkan (IEA, 2020; WEF, 2019).Parallellt med den snabba utvecklingen inom BVK kommer också mycket ny lagstiftning. Inte minst via nya EU-regleringar inom den gröna given (Green Deal). Flera av regleringarna kommer att ha en betydelse för den problematik som beskrivits ovan och för batterivärdekedjan på sikt. Inom de olika förslagen till ny EU-lagstiftning som lanserats på senare tid kommer mycket av detaljerna att fastställas längre fram genom delegerade akter.

    Här finns möjligheter för aktörer inom BVK att göra sin röst hörd i den process där medlemsstaterna får komma in med synpunkter. En hypotes är att denna process skulle tjäna på en utökad samverkan mellan aktörer inom BVK med större möjligheter att se helheten och gemensamma problem och på så vis också ta fram inspel med gemensam nytta. 

    I arbetet med att undersöka vilka befintliga indikatorer som kan användas för att följa en hållbar utveckling av BVK behöver de bakomliggande drivkrafterna fastställas. Det kan finnas olika drivkrafter för en etablering av en hållbar BVK. Aktörer kan ha olika mål och intressen i olika delar av BVK. Myndigheter och beslutsfattare kan exempelvis ha en syn på att den övergripande drivkraften med att etablera en mer hållbar BVK är för att bidra till en minskad klimatpåverkan, medan drivkraften för andra intressenter kan vara att tjäna pengar.

    Det ena behöver naturligtvis inte utesluta det andra, men i förlängningen kan det ge olika uppfattning om vilken påverkan som är mer eller mindre viktig. Det gör att indikatorer som kan användas för att mäta en hållbar utveckling av BVK kommer att svara på olika frågeställningar och peka i olika intresseriktningar. Hållbarhetsbegreppets tre delar (sociala, ekonomiska och miljömässiga) behöver alla beaktas, vilket också betyder att en indikator kan peka på en ekonomiskt positiv utveckling, men där det samtidigt inte behöver betyda en positiv social och/eller miljömässig sådan. För aktörer i olika delar av BVK bör hållbarhet inte längre bara vara ett regulatoriskt krav, utan snarare bli en nyckelkomponent i affärsstrategin. Särskilt eftersom hållbarhetskraven när det gäller klimatpåverkan, efterlevnad av mänskliga rättigheter och ansvarsfull användning av råvaror ständigt främjas inte bara på politisk nivå utan också av kunder, investerare och intressegrupper.

    Ytterligare en viktig del, kopplat till indikatorer för att beskriva utvecklingen inom BVK, är att det behövs hänvisning till vilka företag och aktörer som avses vara verksamma inom BVK. Detta har inte varit en del att lösa inom detta uppdrag. En hypotes är att det exempelvis skulle gå att använda så kallade SNI-koder. SNI är en standard för svensk näringsgrensindelning för att bland annat hänföra företagens verksamhet till en eller flera näringsgrenar (SCB, 2023a). Eftersom BVK består av olika typer av företag kan alla förmodligen inte knytas till en och samma SNI-kod, men ett sätt att lösa det kan vara att utgå ifrån det företag som producerar batterier och därefter, liknande en livscykelinventering, följa företagets aktiviteter och kopplingar till aktörer upp- och nedströms batteriproduktionen. Det finns många hållbarhetsindikatorer redan idag som används för att mäta utvecklingen inom olika värdekedjor, branscher och företag både på global (Agenda 2030) och nationell nivå (Sveriges miljömål). Redan idag rapporterar företag om sin ekonomiska, sociala och miljömässiga påverkan. Olika myndigheter har ansvar för att ställa samman information om Sveriges arbete med att uppnå globala och nationella miljömål där indikatorer ligger till grund för bedömningarna.Även indikatorer inom en av de tre dimensionerna kan visa på olika riktningar.

    Exempel på detta kan vara att klimatpåverkan minskar genom ökad andel förnyelsebar energi, men att detta samtidigt kan bidra till en utökad resursanvändning (primära material i form av metaller och mineral). Detta kommer inte att gå att undvika i vissa fall och därför är det av stor vikt att väga olika motsatser och att sträva efter det alternativ som totalt sett är det mest hållbara. Indikatorer ska därför ses som ett verktyg av flera för att kunna belysa differenser och avväganden i en större kontrast.Inom denna studie är en generell notering att det till antalet finns fler beskrivna och listade miljömässiga och sociala indikatorer än ekonomiska. Beträffande ekonomiska indikatorer kan dessa också ses som mer generella och därför inte ha specifika kopplingar till olika branscher.Studien diskuterar också viktiga aspekter kring tolkning av indikatorer och datakvalitet ihop med några exempel på BVK-indikatorer.

    Bland annat är det av relevans att förstå ursprunget och eventuella begränsningar som de underliggande datakällorna kan ha. Alla datakällor är dock unika på sitt sätt och kräver att en djupare analys av datakällor och klassificering av indikatorkategori görs på varje indikator som ska användas, förslagsvis med studiens samling av aspekter kring indikatorer och data. 

    Utgångspunkten för denna rapport har varit att indikatorerna tillsammans och var för sig beskriver de delar som kan utgöra positiva och negativa effekter för att batterivärdekedjans utveckling blir så hållbar som möjligt. Utifrån dessa indikatorer är det sedan upp till myndigheter och beslutsfattare att, tillsammans med aktörerna inom BVK, driva utvecklingen åt rätt håll. 

    Download full text (pdf)
    Indikatorer för en hållbar utveckling inom batterivärdekedjan
  • 16.
    Kanchiralla, Fayas Malik
    et al.
    Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Brynolf, Selma
    Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Malmgren, Elin
    Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Hansson, Julia
    IVL Swedish Environmental Research Institute. Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;Sustainable Society, IVL Swedish Environmental Research Institute, Aschebergsgatan 44, SE-411 33 Göteborg, Sweden.
    Grahn, Maria
    Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Life-Cycle Assessment and Costing of Fuels and Propulsion Systems in Future Fossil-Free Shipping2022In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 56, no 17, p. 12517-12531Article in journal (Refereed)
    Abstract [en]

    Future ships need to operate with low or possibly zero greenhouse gas (GHG) emissions while ensuring low influence on other environmental impacts and that the operation is economically feasible.

    This study conducts a life-cycle evaluation of potential decarbonization solutions involving selected energy carriers (electrolytic hydrogen, electro-ammonia, electro-methanol, and electricity) in different propulsion system setups (engines, fuel cells, and carbon capture technologies) in terms of environmental impact and costs.

    The results of the study show that the assessed decarbonization options are promising measures to reduce maritime GHG emissions with low-carbon-intensive electricity.

    The same order of GHG reduction is shown to be possible independent of the propulsion system and energy carrier used onboard.

    However, the carbon abatement cost ranges from 300 to 550 €/tCO2eq, and there is a trade-off with environmental impacts such as human toxicity (cancer and non-cancer effects) and freshwater ecotoxicity mainly linked with the wind infrastructure used for electricity production.

    Electro-ammonia in fuel cells is indicated to be effective in terms of the carbon abatement cost followed by the so-called HyMethShip concept.

    The higher abatement cost of all options compared to current options indicates that major incentives and policy measures are required to promote the introduction of alternative fuel and propulsion systems.

  • 17.
    Larsson, Johan
    et al.
    IVL Swedish Environmental Research Institute.
    Andersson, Rasmus
    IVL Swedish Environmental Research Institute.
    Nilsson, Johanna
    Johansson, Sara
    IVL Swedish Environmental Research Institute.
    Skarrie, Håkan
    Smart och klimatneutralt Lund 2030: Arbetspaket 3, AP3 – Framtidens hållbara och robusta energisystem2021Report (Other academic)
    Abstract [sv]

    Föreliggande rapport redovisar arbete som genomförts inom arbetspaketet - Framtidens hållbara och robusta energisystem som utgör en del av projekt ”Smart och klimatneutralt Lund 2030”.

    Syftet har varit att undersöka hur man genom åtgärder på stadsdelsnivå kan bidra till att nå klimatneutrala städer. Detta utifrån förväntad elektrifiering inom mobilitetssektorn samt ökade inslag av lokalt producerad icke planerbar energi. Denna utveckling anses här vara en förutsättning för klimatomställning av samhället men potentiellt också en utmaning för elsystemet. Inom AP3 har potentiella utmaningar kopplade till denna utveckling kartlagts och olika åtgärders möjlighet att minska de negativa effekterna av utvecklingen och istället bidra med såväl elsystem- som klimatnytta analyserats.

    Studien visar bl.a. att utvecklingen innebär en ökning av områdets årsenergibehov med ca 9 % och områdets maxeffektbehov med ca 22 %. Eftersom effektbehovet ökar mer än energibehovet riskerar elnätsbelastningen att förvärras om inte åtgärder vidtas. Studien visar också på en ökad klimatpåverkan med elnätet som avgränsning, vilken också behöver hanteras parallellt med utfasning av fossila bränslen mm.

    Arbetet inom arbetspaketet har projektletts av IVL och skett i samarbete med det lokala energibolaget Kraftringen samt teknik- och fastighetsaktörer och möjliggjorts genom medel från Energimyndigheten.

    Download full text (pdf)
    fulltext
  • 18.
    Larsson, Johan
    et al.
    IVL Swedish Environmental Research Institute.
    Johansson, Sara
    IVL Swedish Environmental Research Institute.
    Gustafsson, Greta
    IVL Swedish Environmental Research Institute.
    Klimatneutrala Lund 2030 - Steg II; Arbetspaket 4 - Energi: Förutsättningar för solceller i staden – en fallstudie2023Report (Other academic)
    Abstract [sv]

    Med utgångspunkt i solcellers potential avseende lokal elproduktion och klimatnytta fokuserar föreliggande projekt på förutsättningarna för urban byggnadsapplicerad solkraft, detta med fokus på möjligheter och eventuella hinder för att dimensionera anläggningar utifrån fysiska förutsättningar för att utnyttja den fulla potentialen. Projektet har, med stöd i tidigare studier, genomförts med utgångspunkten att solceller är önskvärda ur klimat- och energisystemperspektiv samt att dessa i många fall och för många aktörer är lönsamma. Samtidigt finns bilden av att regelverk för skatter och subventioner samt befintliga prismodeller inte styr mot maximering utifrån fysiska förutsättningar, en bild som bekräftades i inledande dialoger med deltagande aktörer i projektet.  

    Download full text (pdf)
    fulltext
  • 19.
    Lindblom, Erik
    et al.
    IVL Swedish Environmental Research Institute.
    Malmaeus, Mikael
    IVL Swedish Environmental Research Institute.
    Vindkraft i kallt klimat: Kunskapsläge och forskningsbehov2022Report (Other academic)
    Abstract [sv]

    Vindkraften har en viktig roll i framtidens energisystem och de flesta bedömare är överens om att mer el kommer att behöva produceras i Sverige framöver. De främsta skälen till detta handlar dels om en elektrifiering av transportsektorn, dels om en omställning av industrin där bland annat batteritillverkning och fossilfri ståltillverkning förutsätter stora mängder el. Trots att vindkraft framstår som en helt nödvändig och rentav den viktigaste komponenten i omställningen av energisystemet, åtminstone på kort sikt, så har utbyggnaden i Sverige bromsat in de senaste åren. En stor del av ansökningarna för nya vindkraftverk stoppas av kommunala veton, rennäring och arts- och naturvårdsskäl. Allmänhetens attityd till vindkraft varierar och även om en majoritet är positiv så ökar också motståndet på olika håll.

    För att genomföra den industriella omställningen i Sverige och elektrifieringen av fordonsflottan kommer stora mängder el behövas. Utgångspunkten i den nationella strategin för en hållbar vindkraftsutbyggnad är att åtminstone 100 TWh ny vindkraft behövs till 2040, men i vissa scenarier behövs ännu mer. Med en kraftig ökning av elbehovet i norr, med stålindustrins omställning och nya batterifabriker, etableringar av andra elintensiva industrier eller expansion av befintliga, kommer en stor del av vindkraftsutbyggnaden att behöva ske i norra Sverige. I denna rapport har vi använt scenarier mellan 12 och 60 TWh ny vindkraft i norra Sverige.Med tanke på storskaligheten i utbyggnaden är det befogat att undersöka vilka behov detta medför i termer av mark- och resursanvändning och vilka flaskhalsar som finns för utbyggnaden. Med en vindkraftutbyggnad i den storlek som ansatts kommer en markyta i storleksordningen mellan 600 och 6000 km2 att behöva utnyttjas för vindkraftparker i norra Sverige. Detta kan jämföras med ytan av Gotland som är drygt 3 000 km2. Ett tillskott på 100 TWh vindkraft i det svenska energisystemet skulle kräva i storleksordningen 8 miljoner ton järn och 2 miljoner ton cement till vindkraftverk och fundament.

    Dessa volymer av basmaterial är troligen inte problematiskt att tillhandahålla givet de mängder som världen redan bryter och använder. Mer problematisk är sannolikt behovet av kritiska råmaterial som koppar och sällsynta jordartsmetaller. Klimateffekten av materialanvändning och uppförande av vindkraftverken beräknas enligt livscykelanalyser typiskt ligga i storleksordningen 10–20 g koldioxid per producerad kWh, vilket för de energiscenarier för norra Sverige vi undersökt motsvara mellan 2,5 upp till 24 miljoner ton koldioxid (totalt), vilket kan jämföras med de samlade territoriella utsläppen från Sverige på i storleksordningen 50 miljoner ton koldioxidekvivalenter per år. Samtidigt utgör vindkraften i praktiken en betydelsefull del av uppfyllandet av de svenska miljökvalitetsmålen och i synnerhet målet om Begränsad klimatpåverkan. Vissa målkonflikter kan finnas med andra miljökvalitetsmål, men analysen i denna rapport tyder generellt på att den negativa påverkan från vindkraften är hanterbar om än inte försumbar.Det är också av betydelse att förstå vilka förutsättningar norra Sveriges unika karaktär innebär för utbyggnaden av vindkraft.

    Förutom rent tekniska utmaningar har det kalla klimatet också en mer storskalig dimension, då elförsörjningen i Sverige ofta är kritisk under vintermånaderna. En vanlig uppfattning är att sträng kyla ofta sammanfaller med stiltje, vilket sätter fingret på en problematik med en stor andel vindkraft i energimixen. Sammantaget har emellertid de kalla dagarna en relativt liten påverkan på den totala elförsörjningen i Sverige. En annan aspekt av norra Sverige är befolkningsstrukturen med stora arealer glesbygd och med en pågående nyindustrialisering i delar av Norrland. Svenska Sápmi breder ut sig över hela norra Sverige ner till Dalarna i söder. En ny lag trädde i kraft i början av 2022 som bland annat innebär att statliga myndigheter ska konsultera företrädare för det samiska folket innan beslut fattas i ärenden som kan få särskild betydelse för dem. Naturen i den alpina biogeografiska regionen är en känslig miljö som kräver särskild hänsyn vid exploateringar av olika slag, inklusive vindkraft.

    Analyserna i denna rapport bygger till stora delar på litteratur men har också genomförts i samråd med aktörer i två workshopar som hållits digitalt under 2022. Viktiga teman under dessa har varit lokalsamhällets behov av samverkan och samnyttjande av mark, samhällsutvecklingen i stort och behovet av en stärkt nationell planering. Generellt konstaterades att olika intressenter behöver involveras i planering, och ersättningsfrågor behöver diskuteras för att öka acceptansen för vindkraft både lokalt och generellt. De långdragna tillståndsprocesser som i nuläget försvårar en snabb utbyggnad av vindkraften behöver hanteras och kompletteras med en effektivare samhällsplanering.

    Sammantaget drar rapporten slutsatsen att en fortsatt utbyggnad av vindkraft i norra Sverige inte försvårar uppfyllandet av miljökvalitetsmålen, och att vindkraften sannolikt är en helt avgörande förutsättning för uppfyllandet av Sveriges klimatmål inklusive miljökvalitetsmålet Begränsad klimatpåverkan. Vindkraften är både en möjliggörare och pådrivare för den regionala nyindustrialiseringen och den nationella/globala gröna omställningen. Norra Sveriges karaktärsdrag innebär inte att vindkraften orsakar allvarligare miljöeffekter, även om de kumulativa miljöeffekterna lokalt eller på sikt kan bli allvarliga på grund av många och storskaliga etableringar i regionen. Till de största utmaningarna för utbyggnaden av vindkraft i norra Sverige hör acceptans från lokalbefolkning och/eller kommunpolitiker samt renskötsel och annan samisk markanvändning. Det finns därför ett behov av förbättrad strategisk planering för en storskalig utbyggnad av vindkraft, som kan bidra till att öka tempot och förutsägbarheten i genomförandet och undvika de flaskhalsar som uppstår inom nuvarande tillståndsprocesser. Forskning kring lämpliga lokaliseringsområden för tillkommande vindkraft ur ett holistiskt perspektiv, och bedömning av kumulativa effekter av olika aspekter av den gröna omställningen, kan bidra till förbättrade planerings- och tillståndsprocesser för landbaserad vindkraft.

    Download full text (pdf)
    fulltext
  • 20.
    Martin, Michael
    et al.
    IVL Swedish Environmental Research Institute.
    Weidner, Till
    Gullström, Charlie
    Estimating the Potential of Building Integration and Regional Synergies to Improve the Environmental Performance of Urban Vertical Farming2022In: Frontiers in Sustainable Food Systems, E-ISSN 2571-581X, Vol. 6Article in journal (Refereed)
    Abstract [en]

    Vertical farms have expanded rapidly in urban areas to support food system resilience. However, many of these systems source a substantial share of their material and energy requirements outside their urban environments.

    As urban areas produce significant shares of residual material and energy streams, there is considerable potential to explore the utilization of these streams for urban agriculture in addition to the possibility of employing underutilized urban spaces in residential and commercial buildings.

    This study aims to explore and assess the potential for developing more circular vertical farming systems which integrate with buildings and utilize residual material and energy streams. We focus on the symbiotic development of a hypothetical urban farm located in the basement of a residential building in Stockholm.

    Life cycle assessment is used to quantify the environmental performance of synergies related to energy integration and circular material use.

    Energy-related scenarios include the integration of the farm's waste heat with the host building's heating system and the utilization of solar PV.

    Circular material synergies include growing media and fertilizers based on residual materials from a local brewery and biogas plant. Finally, a local pick-up system is studied to reduce transportation.

    The results point to large benefits from integrating the urban farm with the building energy system, reducing the vertical farm's GHG emissions up to 40%. Synergies with the brewery also result in GHG emissions reductions of roughly 20%.

    No significant change in the environmental impacts was found from the use of solar energy, while the local pick-up system reduces environmental impacts from logistics, although this does not substantially lower the overall environmental impacts.

    However, there are some trade-offs where scenarios with added infrastructure can also increase material and water resource depletion. The results from the synergies reviewed suggest that proximity and host-building synergies can improve the material and energy efficiency of urban vertical farms.

    The results provide insights to residential building owners on the benefits of employing residual space for urban food provisioning and knowledge to expand the use of vertical farming and circular economy principles in an urban context.

    Download full text (pdf)
    fulltext
  • 21.
    Mata, Erika
    et al.
    IVL Swedish Environmental Research Institute.
    Melolinna, Nelli
    IVL Swedish Environmental Research Institute.
    Larsson, Helena
    IVL Swedish Environmental Research Institute.
    Climate mitigation: Buildings. Summary of Working Group III contribution to the 6th Assessment Report of the Intergovernmental Panel2022Report (Other academic)
    Abstract [en]

    The buildings and construction sector plays a key role in achieving social, environmental, and economic goals. To urgently bring about the significant changes required in the sector to achieve climate goals, all stakeholders require access to updated knowledge to ensure that they can easily make choices that are aligned with the goals.

    To achieve this aim, this report summarizes the Intergovernmental Panel on Climate Change (IPCC) report of Working Group (WG) III’s contribution to the Sixth Assessment Report (AR6), 'Mitigation of Climate Change', Chapter 9 'Buildings'.

    The chapter shows that global CO2 emissions from buildings increased by 50% from 1990 to 2019. By retrofitting existing buildings and using efficient techniques to reduce climate impact in new construction, it is possible to approach net-zero greenhouse gas emissions by 2050. Actions by 2030 are crucial to fully capture the potential for reduced climate impact from buildings.

    The transition of the building sector requires strong collaboration with many other sectors, as it is closely linked to sectors such as the energy sector, land use, resource utilization, and waste management. This requires ambitious policy packages, such as the use of renewable energy sources, as well as efficient design and use of space, energy, materials, and appliances.

    Download full text (pdf)
    Climate mitigation: Buildings Summary of Working Group III contribution to the 6th Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 9
  • 22.
    Moldanova, Jana
    et al.
    IVL Swedish Environmental Research Institute.
    Merelli, Luca
    IVL Swedish Environmental Research Institute.
    Langner, Joakim
    Jones, Jörgen
    Leung, Wing
    Ekstrand, Henrik
    Ziverts, Ulrika
    Playing field for bio-jet fuels: Overview, intercomparison and verification2021Report (Other academic)
    Abstract [en]

    What emissions and what climate impact does today's aviation have? It is important to create a consensus around this in order to be able to both compare the effects of different fuels and other mitigation measures and to relate the impact of aviation to e.g., other modes of transport. Emissions from aviation are inventoried and reported today at several different levels. Currently the main driver of CO2 emission inventories are regulations targeting emissions of greenhouse gas emissions. This report provides a brief overview of the methods and data used, which stem from various regulations and initiatives. A number of emission calculators is driven by the demand for data to report climate impact from air travel and freight transport and includes emission or climate calculators that focus on emissions of CO2 or CO2 equivalents assigned to a passenger or to volume or mass of cargo on a given route or nominal distance. There is a number of such calculators that use different emission factors, flight parameters, aircraft occupancy and contributions from high-altitude impacts, and thus generate different results. Examples are those of ICAO (International Civil Aviation Organization, 2019), NTM (Network for Transport Measures, 2019), IATA (International Air Transport Association, 2019), Atmosfair (Atmosfair, 2019) or Flight Emission Map (Flight Emission Map, 2019). A survey of data and assumptions that form the basis for aviation greenhouse gas emissions and climate calculators and a validation of these by means of data on reported fuel consumption during flights was carried out in the project. For most of the calculators there is a good agreement with the fuel consumption data when the variability of the fuel consumption due to different aircraft types, occupancy, etc., is taken into the account. Three calculators show substantially higher emissions and an analysis indicates that the reason is that they are using obsolete emission factors. The biggest difference between calculators arise from the calculation of CO2 equivalents in which case all use radiation forcing index (RFI) as a measure. The study also included a comparison of SMHI's air emission model with fuel consumption data.

    The high-altitude effects of SLCP are crucial in minimizing the climate impact of aviation – for combustion engines these effects will remain even with use of fossil-free fuel. The first important questions associated with the high-altitude effects are their quantification and reduction of uncertainties of the climate impact of the SLCP. RFI used by many climate calculators is a blunt tool if the aim is to target the high-altitude effects as such, as it is related solely to CO2 emissions and the relation to the SLCP radiative forcing is through impact of the historic emissions of aviation up to the date for which the FI is calculated. More appropriate are forward looking metrics considering forcing from actual SLCP species emitted during the flight as global warming potential (GWP) or global temperature potential (GTP). The most important climate forcing components are emissions of CO2 and formation of contrails and contrail cirrus. Sustainable aviation fuels (SAF) with high hydrogen and low aromatic content emits substantially less soot particles which reduces radiative forcing of the contrails. Model simulations of full implementation of SAF in the current aviation fleet would lead to 20-50 % reduction of RF from contrails and contrail cirrus. A combination of the use of SAF, engine technology with low emissions of soot and NOx and route climate optimisation has the potential to substantially reduce the high-altitude effect.

    Download full text (pdf)
    fulltext
  • 23.
    Morfeldt, Johannes
    et al.
    Chalmers.
    Larsson, Jörgen
    Chalmers.
    Andersson, David
    Chalmers.
    Johansson, Daniel J. A.
    Chalmers.
    Rootzén, Johan
    IVL Swedish Environmental Research Institute.
    Hult, Cecilia
    IVL Swedish Environmental Research Institute.
    Karlsson, Ida
    Chalmers.
    Emission pathways and mitigation options for achieving consumption-based climate targets in Sweden2023In: Communications Earth & Environment, E-ISSN 2662-4435, Vol. 4, no 1, article id 342Article in journal (Refereed)
    Abstract [en]

    National emission reduction targets under the Paris Agreement have a territorial focus, incentivizing mitigation actions domestically. Here we examine the theoretical basis for adopting complementary consumption-based net-zero emission targets and assess the consequences of adopting such proposed targets for Sweden. We apply scenario analyses based on a prospective lifecycle assessment framework. The framework is a hybrid of bottom-up simulations for passenger travel, construction and housing, and food, and top-down analyses for remaining consumption. In this work, we show how consumption-based climate targets may accentuate the need for new demand-side climate policies that contribute to reducing emissions along supply chains of products and services.

    Our scenario analysis suggests that combining advanced mitigation technologies with behavioral changes could reduce emissions from 9.8 tons of carbon dioxide equivalents per capita in 2019 to between 2.7 and 4.8 tons by 2045 for Swedish residents, depending on global decarbonization pathways. Combining advanced mitigation technologies with behavioural changes could achieve the lowest carbon emissions per capita in Sweden, suggest scenario analyses combining bottom-up simulations for passenger travel, construction and housing, and food, and top-down analyses for remaining consumption.

  • 24. Nilsson, Johanna Nilsson
    et al.
    Nilsson, Johan
    IVL Swedish Environmental Research Institute.
    Martin, Michael
    IVL Swedish Environmental Research Institute.
    Hållbarhetsanalys av utvecklingsvägen ”starka sektorskopplingar” för att uppnå ett hundra procent förnybart elsystem: Delrapport i projektet "Hundra procent förnybart - hur många procent hållbart?" i samarbete med Mistra Carbon Exit2023Report (Other academic)
    Abstract [en]

    The report is a collaboration between the projects "One hundred percent renewable - how many percent sustainable?" and Mistra Carbon Exit (MCE). This initial analysis is a first step in identifying the most critical sustainability aspects (economic, ecological and social) that the further sustainability analysis in the project "One hundred percent renewable - how many percent sustainable" should focus on. 

    The focus of the report is the development of an analysis of the preliminary scenario “Strong sector connections” as a way to reach one hundred percent renewable electricity system. “Strong sector connections” refers to electricity production and the transport and industrial sectors in the form of heat storage, hydrogen storage, heating systems and flexible charging of electric vehicles.

    Three case studies (heat storage, hydrogen storage and flexible charging of electric vehicles) have been selected and studied in a workshop. At the workshop, the expert groups for the three case studies discussed the impact on the 17 global sustainability goals with the digital tool SDG Impact Assessment Tool. Conclusions from the workshop, both based on co-contribution to the forthcoming in-depth sustainability analysis and experiences of the methodology, have since been compiled. The SDG Impact Assessment Tool provides the opportunity to systematically go through all 17 sustainability goals for a case study and thereby avoid hand-picking the SDGs that at first glance could be seen as most relevant.

    The method provides a deep understanding of the motives and arguments for the analysis performed, where the results reflect the composition of the participating experts. The results are strategic in guiding the continued work to quantify the sustainability impact. It is necessary to clearly define the case study in advance in order to give the group a consensus on what is to be analyzed, and to enable the group on site to further specify the definition if necessary.In general, the expert groups have assessed that the goals that focus more on sustainability linked to social aspects are not affected to the same extent as those that are more clearly focused on environmental and economic sustainability. Sustainability goals, which in their description are more directly linked to the adjustment of the energy system (such as energy, climate, infrastructure and societal aspects) have also largely been assessed to have a more direct impact. Together, the groups' assessments show that the positive effects generally outweighed the negative and in two of the case studies no weighted assessment was made of the negative impact for any of the 17 SDGs. However, it is not said that there are no negative effects in the groups.  

    However, it is not said that there are no negative effects in the case studies. For example, it was discussed that material consumption and interventions in the construction of the various techniques can have a negative effect on sustainability goals. In addition, for example, a nationally positive impact on a target can also have a locally negative impact.Through the performed workshop, a first indication and identification has been made of which SDGs are affected for each case study. Although the case studies are of a different nature, in most cases similar tendencies and directions appear in the SDG assessments.

    This initial analysis provides a valuable basis for the project's next step, where indicators and analytical framework are defined, as a basis for the sustainability analysis, where goal conflicts are also to be analyzed.

    Download full text (pdf)
    Inledande hållbarhetsanalys
  • 25.
    Rootzén, Johan
    et al.
    IVL Swedish Environmental Research Institute.
    Nyberg, Theo
    IVL Swedish Environmental Research Institute.
    Karltorp, Kersti
    IVL Swedish Environmental Research Institute.
    Åhman, Max
    Turning the tanker? Exploring the preconditions for change in the global petrochemical industry2023In: Energy Research & Social Science, ISSN 2214-6296, E-ISSN 2214-6326, Vol. 104, p. 103256-103256, article id 103256Article in journal (Refereed)
    Abstract [en]

    Meeting the goals set out in the Paris Agreement will require rapid and deep reductions of greenhouse gas emissions (GHG) across all sectors of the global economy. Like all major societal transformations, this climate transition will impact both social and technical aspects of society and, depending on how it evolves, will reallocate social and economic benefits and costs differently.

    Recognising the importance of decarbonising key industry sectors with large GHG emissions and an significant impact on society, this study explores the opportunities and tensions involved in a transition of the petrochemical industry.

    We do so by analysing how access to natural resources, the petrochemical industry's role in the economy and the socio-political landscape in key petrochemical producing countries impacts prerequisites for change.

    The assessment shows that devising adequate policy responses, building legitimacy for change and potentially building bottom-up pressure for a timely climate transition are likely to look very different in the 10 countries with the greatest active petrochemical capacity in the world: China, the United States, India, South Korea, Saudi Arabia, Japan, Russia, Iran, Germany and Taiwan.

    The indicators used to explore the prerequisites for change all point to areas where actions and policies must advance for a transition to be realised.

    This includes efforts to cap fossil feedstock supply and production capacity, efforts to limit and ultimately reduce demand for plastics and fertilisers, and measures to formulate transition strategies and policies that capture and provide agency for communities and groups that are currently on the receiving end of negative health and environmental impacts from the petrochemical industry and that will also, in many cases, be most closely affected by a transition.

  • 26.
    Rootzén, Johan
    et al.
    IVL Swedish Environmental Research Institute.
    Nyberg, Theo
    IVL Swedish Environmental Research Institute.
    Särnbratt, Mirjam
    IVL Swedish Environmental Research Institute.
    Nilsson, Johan
    IVL Swedish Environmental Research Institute.
    Johansson, Sara
    IVL Swedish Environmental Research Institute.
    Holistic, actionable, transparent – How could sustainability of energy systems scenarios be assessed? - Findings from the project “100 percent renewable – how  many percent sustainable?”2023Report (Other (popular science, discussion, etc.))
    Abstract [en]

    In the context of achieving a climate-neutral and sustainable electricity system, energy systems modelling is often used as a tool to assist decision making. However, a challenge posed within the field is how to represent sustainability in a way that presents actionable, clear and holistic results. There is thus a need to give a more comprehensive and nuanced view of sustainability aspects of energy system modelling.

    To provide a basis of understanding of how sustainability could be conceptualized and assessed in energy systems modelling, six well known (from a Swedish point-of-view) sustainability frameworks were analyzed and presented in this report: the concept of Environmental Carrying Capacity, the Planetary Boundaries, the Doughnut Economics framework, the Sustainable Development Goals, the Swedish Environmental Quality Objectives and the Framework for Strategic Sustainable Development. The frameworks were structured according to their sustainability concept and according to what decision-making they would be able to provide input to. The results of the report serve as input to the discourse concerning how the energy system could be transformed to 100 % renewable electricity production along a truly sustainable way.

    Download full text (pdf)
    fulltext
  • 27.
    Sandgren, Annamaria
    et al.
    IVL Swedish Environmental Research Institute.
    Nilsson, Johanna
    Emissionsfaktorer för nordiskelmix med hänsyn till import och export2021Report (Other academic)
    Abstract [sv]

    När el används i Sverige så påverkar det klimatet. Då elsystemet är komplext och ihopkopplat över landsgränser är det inte givet vilka elproduktionsanläggningar som ska omfattas av beräkningarna. IVL Svenska Miljöinstitutet har inom ramen för SMED och på uppdrag av Naturvårdsverket utrett lämplig systemgräns och beräknat klimatpåverkan utifrån bokföringsperspektivet för tre år. I studien fastslogs att den systemgräns som bäst representerar verkligheten just nu är nordisk[1] elmix, där hänsyn tas till import och export från och till angränsande länder. Genomsnittlig emissionsfaktor för de tre åren hamnade kring 90 g CO2e/kWh. Rapporten har även publicerats i SMEDs rapportserie som ”Rapport Nr 4 2021”. I den här versionen finns dock ett tillägg. Det har gjorts en bedömning av indirekta och direkta utsläpp även för importerad el vilket underlättar användningen av emissionsfaktorerna för att redovisa klimatpåverkan från köpt el enligt de scope som används i GHG-protokollets redovisningsstandard.

     [1] Sverige, Norge, Finland och Danmark

    Download full text (pdf)
    fulltext
  • 28.
    Särnbratt, Mirjam
    et al.
    IVL Swedish Environmental Research Institute.
    Fransson, Nathalie
    IVL Swedish Environmental Research Institute.
    Dagens affärsmodeller för vätgas i vägtransporten2023Report (Other (popular science, discussion, etc.))
    Abstract [sv]

    Dagens affärsmodeller för vätgas inom vägtransporten kartlades genom en litteraturstudie och intervjuer med vätgasaktörer aktiva på den svenska marknaden. Intervjuerna visade på att aktörerna samarbetar längs hela värdekedjan för att skapa en kritisk massa i sitt kundunderlag och få marknaden att ta fart. Dagens affärsmodell är omogen och är fortfarande i en etableringsfas.

    Download full text (pdf)
    fulltext
  • 29.
    Tilsted, Joachim Peter
    et al.
    Lund University.
    Bauer, Fredric
    Lund University.
    Deere Birkbeck, Carolyn
    The Graduate Institute Geneva.
    Skovgaard, Jakob
    Rootzén, Johan
    IVL Swedish Environmental Research Institute.
    Ending fossil-based growth: Confronting the political economy of petrochemical plastics2023In: One Earth, ISSN 2590-3322, Vol. 6, no 6, p. 607-619Article in journal (Refereed)
    Abstract [en]

    The expanding petrochemical industry depends on fossil fuels both as feedstock and a source of energy and is at the heart of the intertwined global crises relating to plastics, climate, and toxic emissions. Addressing these crises requires uprooting the deep-seated lock-ins that sustain petrochemical plastics. This perspective identifies lock-ins that stand in the way of ambitious emission reductions and ending plastic pollution. We emphasize that addressing the growing plastic production and consumption requires confronting the political economy of petrochemicals.

    We put forward key elements needed to address the dual challenges of moving away from the unsustainable production of plastics and drastically reducing emissions from the petrochemical sector and argue for attention to the links between fossil fuels and plastics, which in turn involves challenging entrenched power structures and vested interests linked to the fossil-based plastics economy. A critical step would be ensuring attention to the production of petrochemicals and related upstream issues in the upcoming global plastics treaty.

  • 30. Trinh, Jenny
    et al.
    Harahap, Fumi
    Fagerström, Anton
    Hansson, Julia
    What Are the Policy Impacts on Renewable Jet Fuel in Sweden?2021In: Energies, E-ISSN 1996-1073, Vol. 14, no 21, p. 7194-7194Article in journal (Refereed)
    Abstract [en]

    The aviation industry’s contribution to global human-induced CO2-emissions is expected to increase to 3% by 2050 as demand for aviation grows. An essential component for a carbon-neutral growth is low-carbon, sustainable aviation fuels, for example alternative drop-in fuels with biobased components.

     

    This study aims at answering how combining different policies for the aviation sector can support the production of renewable jet fuel (RJF) in Sweden while reducing greenhouse gas emissions. The results demonstrate the importance of implementing policy instruments to promote the production of RJF in Sweden.

     

    The current level of the penalty fee is not sufficient to support the fuel switch to RJF. A higher blending mandate and carbon price will accelerate the transition towards renewable and sustainable fuels for the aviation industry.

  • 31. Trinh, Jenny
    et al.
    Nojpanya, Pavinee
    IVL Swedish Environmental Research Institute.
    Hernández Leal, Maria
    IVL Swedish Environmental Research Institute.
    Fagerström, Anton
    IVL Swedish Environmental Research Institute.
    Särnbratt, Mirjam
    IVL Swedish Environmental Research Institute.
    Fossilfri Flygräddning 20452022Report (Refereed)
    Abstract [en]

    To meet the Swedish climate target of net-zero greenhouse gas (GHG) emissions by 2045, it has become more and more urgent for the aviation sector to reduce its climate footprint. However, this represents a challenge for the non-commercial part of the aviation sector such as the air borne search-and-rescue services, as their activities cannot be compromised by the climate target. Increased use of sustainable aviation fuels (SAF) is a way to achieve the climate target, while still not compromising the mission for this part of aviation. 

    However, due to a high demand on SAF, their availability and possibility to supply the aviation sector in Sweden as well as their environmental impact in relation to the climate target is still somewhat uncertain.

    This report aims to increase the understanding in these issues by first reviewing the domestic feedstock availability and calculating the SAF production potential within Sweden. Thereafter, an assessment was done on how the aviation fuel market could vary in Sweden by 2045 due to the strength of the GHG reduction mandate and the dependence or independence of fuel from outside Sweden.

    This was done through 4 different future scenarios based on a mathematical model. Finally, the environmental impact of selected SAFs was evaluated by life cycle assessment (LCA) following the method described in the recast of the Renewable Energy Directive (REDII). The assessment was done based on the currently available data. Thus, the future change in the technology and other circumstances were not taken into account. 

    The current and future (2045) Swedish production potential of jet fuel was investigated via 4 different pathways, i.e., Hydroprocessed Esters and Fatty Acids (HEFA) from biogenic waste oils, Gasification-based Fischer-Tropsch (G-FT) from forest residues, Hydrothermal Liquefaction (HTL) from forest residues and Power-to-Liquid (PtL) from biogenic captured CO2 and H2 from electrolysis via Fischer-Tropsh (FT).

    The pathways, of the assessed ones, having the highest current and future potential considering feedstock supply are G-FT and HTL. The results were however considerably affected by the assumptions made on process yield. The production potential of PtL was not as high as the other pathways due to low availability of feedstock. Finally, HEFA was the pathway with the lowest potential due to the low availability of domestic raw material.

    Based on the scenario analysis, the future of fossil free jet fuel is highly dependent of the price of fuel as well as the maximum allowed blending ratio of fossil free jet fuel. In this particular scenario analysis, domestic ATJ and HEFA was favored by the model thanks to their low production costs and avoided import costs, since the fuel is produced in Sweden. However, although the production plants used in the model will be constructed within Swedish borders, it is unlikely that domestic HEFA feedstock would be sufficient to supply them and there would likely be an import of waste oils to meet the demand of the plants. 

    The environmental assessment was done on UCO-based HEFA and PtL. HEFA was assessed as it is the fuel that the Search and Rescue fleet used during the pilot phase of this project. PtL was assessed for the sake of comparison and also because most data for PtL production was already available. Both HEFA and PtL show the potential of reducing the fossil GHG emissions up to 70 and 77%, respectively. However, with the technical and legislative limitations, it is not yet possible to use pure SAF in the aviation sector. This leads to the potential emission reduction of the greenhouse gases being lower than 42%. SAF production and transportation of feedstock are one of the main contributors to the emissions.

    In general, HEFA production has higher climate impact than the production of PtL. In addition, UCO which is the feedstock for HEFA was assumed to be collected in China. This gives a significantly higher impact compared to the PtL-process where all activities were assumed to take place in Sweden. This implies that the climate impact of HEFA can be reduced if the UCO can be collected domestically. However, as the assessment shows, the climate target will be difficult to achieve when using HEFA or PtL.

    The challenge lies on the upstream processes of these two SAF which currently are still fossil-based. For HEFA, it is common that H2 is produced from natural gas while for PtL, the production of raw materials used in electrolysis and carbon capture process such as chemicals and catalysts contribute to fossil emissions.  

    Download full text (pdf)
    fulltext
  • 32. Vesterlund, Mattias
    et al.
    Borisová, Stanislava
    IVL Swedish Environmental Research Institute.
    Emilsson, Ellinor
    Data center excess heat for mealworm farming, an applied analysis for sustainable protein production2024In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 353, p. 121990-121990, article id 121990Article in journal (Refereed)
    Abstract [en]

    Since Sweden joined the EU in 1995, importing food became easier and cheaper, leading to certain parts of thecountry, such as Norrbotten, becoming highly dependent on imports. This dependency, along with the inherentenvironmental impact of imports, could be significantly reduced by local farming. The environmental emissionsoriginating from animal farming could be lowered even further by substituting the highly polluting soybean feedwith, e.g., insect feed.

    This study examines the farming of mealworms, utilizing excess heat from a data center,part of a growing industry in Norrbotten county, as a means of alternative feedstock for animal production and acase study for industrial symbiosis. This industrial symbiosis project is in line with the EU’s incentive to use othersources of protein and thus lower the EU’s reliance on the import of foreign protein. Three different feedingapproaches are tested, in a room heated with data center excess heat of 30 ◦C and at room temperature of about20 ◦C. After the adult mealworms were harvested, a sample was taken to analyze their nutritional values. Theresults show that protein, lipid, and fiber content is 19,1 g, 12,6 g, and 2,7 g per 100 g, respectively. All aminoacids except tryptophan were detected. This project concludes that it is possible to reach full-grown mealwormsin about 8 weeks, which is about half the time stated in the literature.

  • 33.
    Wård Edvall, Sara
    et al.
    IVL Swedish Environmental Research Institute.
    Chi Johansson, Nina
    IVL Swedish Environmental Research Institute.
    Klugman, Sofia
    IVL Swedish Environmental Research Institute.
    Jusufovska, Sevda
    IVL Swedish Environmental Research Institute.
    Pelli, Aurora
    IVL Swedish Environmental Research Institute.
    Ågren, Karin
    IVL Swedish Environmental Research Institute.
    Faktaunderlag för Energiagenda i Västerbotten2023Report (Other (popular science, discussion, etc.))
    Abstract [sv]

    Rapporten beskriver Västerbottens energisystem utifrån nuläge, möjligheter och ny teknik. I arbetet framkom att kommande elbehovet främst är i kustlandet och det finns begränsningar i möjligheten att överföra elen dit. Planerad kraftproduktion ser inte ut att räcka till de nya elbehoven och de oljeprodukter som används går främst till transporter. Effektgapet som analyserats behöver lösas genom att produktionen stärks och att arbete med energieffektivisering, effektstyrning och lagring bedrivs. 

    Download full text (pdf)
    fulltext
  • 34. Åström, Stefan
    et al.
    Sandvall, Akram
    IVL Swedish Environmental Research Institute.
    Wisell, Tomas
    IVL Swedish Environmental Research Institute.
    Karlsson, Kenneth
    IVL Swedish Environmental Research Institute.
    Mawdsley, Ingrid
    IVL Swedish Environmental Research Institute.
    Effekter på utsläpp av luftföroreningar från förändrad framtida elbalans i Sverige2022Report (Other academic)
    Abstract [sv]

    I rapporten undersöks hur framtida höga elbehov i flera sektorer (el- och värmeproduktion, bostäder och service, samt industri) kan komma att påverka framtida utsläpp av NOX och små partiklar (PM2,5). Ökad elektrifiering riskerar att fördröja den pågående utsläppsminskningen av NOX till år 2030 men skynda på utsläppsminskningen till år 2050. Effekten på den pågående utsläppsminskningen av PM2,5 riskerar vara fördröjande både år 2030 och 2050.

    Download full text (pdf)
    fulltext
1 - 34 of 34
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf