IVL Svenska Miljöinstitutet

ivl.se
Ändra sökning
Avgränsa sökresultatet
1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Fakioglu, Malhun
    et al.
    Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey;Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, P.O. Box 7050, 75007 Uppsala, Sweden.
    Golovko, Oksana
    Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, P.O. Box 7050, 75007 Uppsala, Sweden.
    Baresel, Christian
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 11428 Stockholm, Sweden.
    Ahrens, Lutz
    Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, P.O. Box 7050, 75007 Uppsala, Sweden.
    Ozturk, Izzet
    Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey.
    Combination of ozonation with GAC, AIX and biochar post-treatment for removal of pharmaceuticals and transformation products from municipal WWTP effluent2024Ingår i: Environmental Science: Water Research & Technology, ISSN 2053-1400, E-ISSN 2053-1419, Vol. 10, nr 12, s. 3249-3262Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Pharmaceuticals have been detected in water and wastewater, resulting in increasing research attention towards the elimination of these substances from aqueous environments. Due to the limitations of conventional processes in wastewater treatment plants (WWTPs) to fully eliminate these compounds, more research is needed on complementary advanced treatment technologies. This study aims to examine the removal efficiency for 24 selected pharmaceuticals and the fate of their 7 main metabolites including several oxidation transformation products by various technique combinations applied on the effluent from a full-scale WWTP. Investigated treatment options include ozonation (O3) combined with either granular activated carbon (GAC), two different types of biochar, and anion exchange (AIX) in a continuously operated laboratory-scale system. The average removal of analyzed pharmaceuticals ranged between 8.8–97% with an O3 dose of 0.28 g O3/g DOC (dissolved organic carbon), whereas it ranged from 86–99% for higher O3 dosages (0.96 and 2.17 g O3/g DOC).

    Overall, the investigated metabolites of pharmaceuticals exhibited lower removal efficiency (between −33 and 99%) with ozone compared to the parent compounds at all O3-dosages. Concentrations of oxidation transformation products such as citalopram N-oxide were increased after ozone treatment, whereas it was decreased after the columns at different rates. The bromate concentrations during all three O3-dosages (0.28, 0.96 and 2.17 g O3/g DOC) were below 5 μg L−1. GAC was the best performing sorbent among all materials, where even after two weeks of continuous operation, nearly all compounds were removed below quantification levels. Although biochar 1 showed better performance (30–89%, mean = 68%) than biochar 2 (8.5–82%, mean = 38%), both sorption materials showed reduced sorption capacity over the time period of two weeks for most of the target compounds. On the other hand, AIX had lower removal rates ranging between 2–55% (mean = 20%). Regarding the combination of O3 with the individual sorbent materials, GAC was the most successful combination with O3 for the removal of pharmaceuticals (>99%) and oxidation transformation products (>60%). The combination of O3 with biochar 1 was more successful (mean = 91%) than the combination with biochar 2 (mean = 79%), where the combination of O3 with AIX showed the lowest removal rates (mean = 58%).

  • 2.
    Munthe, John
    IVL Svenska Miljöinstitutet.
    Mitigation options for chemicals of emerging concern in surface waters; Operationalising solutions-focused risk assessment.2017Ingår i: Environmental Science: Water Research & Technology, ISSN 2053-1400, E-ISSN 2053-1419, Vol. 2017Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The water system provides many services to society; industries, municipalities and agriculture all withdraw, use and return water and demand a water quality fit for the intended purposes. Both global production of chemicals and global water withdrawal grow faster than human population. This implies increased chemical threats to water, and creates a strong driver for mitigation to protect human health, ecosystem integrity and ecosystem services. Here we connect the perspectives of the water cycle and the chemical life cycle and review possible mitigation options. We categorize mitigation options in various stages of the chemicals' life cycle, taking various sectors and environmental pathways into account. More technologically oriented versus other types of mitigation options are discerned, and their relevance on spatial and temporal scale is discussed.

    We review various water treatment techniques in relation to physical–chemical properties of chemicals. Finally we discuss how a mitigation database can be used to assess the effectiveness of interventions, by coupling them to regional or global hydrological models. A solution-focused and systems-oriented perspective combined with a mitigation database offers a common perspective amongst actors on the effects for water quality of possible mitigation options throughout the chemical's life cycle, in various sectors and at various places in the water system. This can stimulate coherent implementation of effective mitigation options, cross-sectoral learning and further innovations to improve water quality.

1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf