IVL Swedish Environmental Research Institute

ivl.se
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Karlsson, Linus
    IVL Swedish Environmental Research Institute.
    Malovanyy, Andriy
    IVL Swedish Environmental Research Institute.
    Thorsén, Gunnar
    IVL Swedish Environmental Research Institute.
    Goicoechea Feldtmann, Melissa
    FIHM.
    Holmquist, Hanna
    IVL Swedish Environmental Research Institute.
    Pütz, Kerstin
    IVL Swedish Environmental Research Institute.
    Dalahmeh, Sahar
    Uppsala University.
    Ahrens, Lutz
    SLU.
    PFAS – how can Swedish wastewater treatment plants meet the challenge? Compilation of knowledge and guidance for water/wastewater actors regarding PFAS2023Report (Other academic)
    Abstract [en]

    Per- and Polyfluoroalkyl Substances (PFAS) are everywhere around us in society, found in commercial and industrial products, the atmosphere, waste, water (waste, surface, drinking, and ground), soil, plants, animals, and even in our bodies. The use and spread of PFAS is a global societal challenge, affecting even the most remote places on Earth. One of the reasons why PFAS has been an attractive component in many products and industrial applications is their extreme chemical and thermal stability. However, these same properties allow for the persistence of PFAS in the environment, whereby even low PFAS emissions over time can be accumulated and pose a high risk of negative health and environmental effects. Today there are thousands of known and unknown PFAS with widely varying properties and toxicity, which makes both risk assessments and management of this growing environmental problem difficult. According to a national mass balance for PFAS emissions from products and atmospheric deposition are the major sources of PFAS in Sweden.

    The amount of PFAS which are environmentally dispersed via wastewater and sewage sludge can be considered a minor part. However, due to the persistence of PFAS, measures to minimize their addition via these pathways may be necessary to reduce the total environmental load. Due to their toxicity and persistence, PFAS have recently become heavily regulated, with many regulatory agencies lowering the accepted PFAS environmental level ranges. Many PFAS have already been banned in Sweden or the EU and assessment grounds or action limits have been defined for various PFAS (e.g., surface water bodies, groundwater and drinking water) to initiate measures to reduce the spread of the substances. Already announced and stricter regulations will further increase the need for measures to minimize human exposure to PFAS and their dispersal in the environment.

    Regardless of which measures are implemented, PFAS will remain in the environment for a long time, even if a global ban of the chemicals is implemented. Long-term management of PFAS is thus necessary to removal from the cycle gradually. The focus of mitigation actions should primarily be on heavily contaminated land and landfill leachate. The review of existing data from Swedish wastewater treatment plants WWTP and receiving recipients shows that today’s treatment processes do not remove PFAS. At some WWTP, however, an effective separation of certain PFAS is observed, which should be investigated further. Perfluorooctanoic sulfonic acid (PFOS) levels in many of the investigated inland surface waters receiving effluent from treatment plants and PFAS from other sources/pathways exceed existing limits. In many cases, however, analysis limitations prevent an assessment.

    Ongoing activities around various treatment and destruction techniques for PFAS show that there are currently no techniques that achieve a far-reaching PFAS removal from municipal wastewater without significant resource consumption and related costs. For the continued use of sludge as a fertilizer, upstream mitigation is needed, with e.g., disconnection or treatment of PFAS-contaminated leachate. However, several ongoing projects indicate that a certain part of PFAS in wastewater can be removed as a side-effect of advanced treatment for pharmaceutical removal. This report provides guidance to stakeholders on how the PFAS problem can be tackled. It also demonstrates the need to improve and spread PFAS knowledge, particularly those involved with PFAS measurement data, treatment techniques and PFAS in sludge. 

    Download full text (pdf)
    fulltext
  • 2.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Karlsson, Linus
    IVL Swedish Environmental Research Institute.
    Malovanyy, Andriy
    IVL Swedish Environmental Research Institute.
    Thorsén, Gunnar
    IVL Swedish Environmental Research Institute.
    Goicoechea Feldtmann, Melissa
    IVL Swedish Environmental Research Institute.
    Holmqvist, Hanna
    IVL Swedish Environmental Research Institute.
    Winkens Pütz, Kerstin
    IVL Swedish Environmental Research Institute.
    Dalahmeh, Salar
    Uppsala Universitet.
    Ahrens, Lutz
    SLU.
    PFAS – Hur kan svenska avloppsreningsverk möta denna utmaning?: Kunskapssammanställning och vägledning för VA-aktörer kring PFAS2022Report (Other academic)
    Abstract [en]

    PFAS (Per- and Polyfluoroalkyl Substances) are everywhere around us in society; in products, the atmosphere, waste, wastewater, surface water, drinking water, groundwater, soil, plants, animals and in our bodies. The use and spread of PFAS is a global societal challenge and even the most remote places on earth are no longer unaffected by PFAS substances. One of the reasons why PFAS has been attractive in many products and industrial applications is the substances' extreme chemical and thermal stability. However, the same properties create challenges in the environment as the persistence of PFAS implies that even low emissions over time can be accumulated in different environments with a high risk of negative health and environmental effects. Today there are thousands of known and unknown PFAS with widely varying properties and toxicity, which makes both risk assessments and management of this growing environmental problem difficult.

    A national mass balance for PFAS shows that emissions from products and atmospheric deposition are the major sources of PFAS to Sweden. The PFAS-amounts that are spread to the environment via wastewater and sewage sludge can be considered a minor part. However, due to the persistence of PFAS substances, measures to minimize the addition via these pathways may be relevant in order to reduce the total environmental load.

    Considering the toxicity and persistence of PFAS, their use has been heavily regulated in recent times and the levels that are considered acceptable in the environment have been lowered. Many PFAS have already been banned in Sweden or the EU and assessment grounds or action limits have been defined for various PFAS in e.g. surface water bodies, groundwater and drinking water to initiate measures to reduce the spread of the substances. Already announced and upcoming stricter regulations will further increase the need for measures to minimize human exposure to PFAS and their dispersal in the environment. Regardless of which measures that are implemented, PFAS will remain in the environment for a long time, even if a global ban of the chemicals is implemented. A long-term management of PFAS is thus necessary with a gradual removal from the cycle. The focus of mitigation actions should primarily be on heavily contaminated land and landfill leachate.The review of existing data at Swedish sewage treatment plants and receiving recipients shows that today's treatment processes do not remove PFAS even of some PFAS are removed and end up in the sludge. At some sewage treatment plants, however, an effective separation of certain PFAS is observed, which should be investigated further. PFOS levels in many of the investigated inland surface waters receiving effluent from treatment plants and PFAS from other sources/pathways exceed existing limits. In many cases, however, analysis limitations prevent an assessment.

    Ongoing activities around various treatment and destruction techniques for PFAS show that there are currently no techniques that achieve a far-reaching PFAS removal from municipal wastewater without significant resource consumption and related costs. For a continued use of sludge as a fertilizer, upstream mitigation is needed, with e.g. disconnection or treatment of PFAS-contaminated leachate. However, several ongoing projects indicate that a certain part of PFAS in wastewater can be removed as a side-effect of advanced treatment for pharmaceutical removal.The report also provides guidance to stakeholders on how the PFAS problem can be tackled. In addition, the report shows a great need to improve and spread knowledge about PFAS with, above all, measurement data and knowledge about treatment techniques and PFAS in sludge in order to be able to meet the PFAS challenge.

    Download full text (pdf)
    PFAS – hur kan svenska avloppsreningsverk möta utmaningen
  • 3.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Önnby, Linda
    IVL Swedish Environmental Research Institute.
    Pütz, Kerstin
    IVL Swedish Environmental Research Institute.
    Karlsson, Linus
    IVL Swedish Environmental Research Institute.
    Esfahani, Bahare
    IVL Swedish Environmental Research Institute.
    Thorsén, Gunnar
    IVL Swedish Environmental Research Institute.
    Tuvesson, Malin
    MSVA .
    Rening av hormoner vid avloppsreningsverk i kalla klimat: En kunskapssammanställning och lärdomar från pilottester vid Fillan ARV i Sundsvall2023Report (Other academic)
    Abstract [sv]

    Vid tre av de största avloppsreningsverken i Sundsvall kommun har IVL genomfört en förstudie med syftet att utreda förutsättningar för en fullskaleinstallation för rening av läkemedelsrester från avloppsvatten. Förstudien visade att det framför allt var hormoner som utgjorde den största risken för negativ påverkan på vattenförekomsten. Eftersom Sundsvall kommun har planer för en framtida utbyggnad med kväverening vid Fillan ARV, föddes en tanke om huruvida en sådan utbyggnad även skulle kunna bidra till att hormonhalterna i utgående avloppsvatten minskar till icke-detekterbara nivåer.

    Detta mot bakgrund av att minskade hormonhalter observerats vid avloppsreningsverk med kväverening i södra Sverige. Om motsvarande minskning av utgående hormonhalter skulle observeras vid en utbyggd kväverening i Sundsvall kommun, skulle detta leda till att de observerade miljöriskerna i recipienten eliminerades.Med ekonomiskt stöd från Naturvårdsverket, och med hjälp av en befintlig pilotanläggning för studier av kväverening i kalla klimat via rörliga biofilmsreaktorer med bärare (MBBR), genomfördes under åren 2021 och 2023 en kompletterande förstudie vars resultat presenteras i denna rapport. Projektet har fokuserat på rening av hormoner och hormonstörande effekter vid implementering av kväverening i kalla klimat. Det övergripande målet har varit att öka kunskapen om kväverening och nedbrytning av hormoner vid låga temperaturer och att identifiera kunskapsluckor.

    Denna kunskap ska stödja planering och implementering av reningsprocesser vid höga hormonhalter i avloppsvatten i kalla klimat.Föreliggande rapport sammanställer dels kunskap om rening av hormoner och hormonstörande ämnen vid avloppsreningsverk utifrån i huvudsak en svensk kontext, dels resultat från genomförda pilottester vid Fillan ARV i Sundsvall. Genomgående under projektperioden observerades att kväve kunde reduceras med mer än 70 % i genomsnitt. Veckovisa analyser av hormoner och hormonstörande effekter, samt månadsvisa analyser av läkemedelsrester, visade däremot på en stor variation av inkommande halter och reningrader.

    En genomgående, och förväntad trend, var att halterna av östrogena effekter följde detekterade halter av både östron och östradiol. Halten av etinylöstradiol, däremot, detekterades inte i något av de analyserade proverna under hela projektperioden. Vid de tillfällen där reduktionsgraden av hormonerna var närmare 80 %, var det fortfarande höga halter av hormoner i utgående avloppsvatten, vilket bland annat kunde förklaras med höga inkommande halter. Inga tydliga samband mellan höga reduktionshalter av hormoner och kväve eller andra processrelaterade aspekter kunde observeras. Detta resultat indikerar att reduktion av hormoner och kväverening i huvudsak utförs av skilda grupper av mikroorganismer. En högre reduktion av hormoner kunde däremot observeras i filtrerade prover relativt ofiltrerade, något som delvis kan förklara den låga hormonreduktion efter MBBR-processen som vid dessa försök saknade en partikelavskiljning. 

    Sammanfattningsvis kan det konstateras att hypotesen kring att kväverening effektivt kan rena bort hormoner i kalla klimat med en MBBR-teknik inte kan bekräftas vid de betingelser som utvärderats i denna rapport. Det kunde inte heller bekräftas när temperaturen ökade med 4 °C i processen eftersom ingen signifikant påverkan på reningsgraden för varken hormoner, hormonstörande effekter eller läkemedelsrester kunde observeras. Utifrån data från denna rapport kan det därför konstateras att vid anläggningar i norra Sverige, där höga hormonhalter utgör huvudproblemet avseende påverkan på recipient, kan en avancerad rening för att ta bort hormoner och deras effekter behövas, åtminstone i de fall där biofilmsprocesser såsom MBBR implementeras. 

    Download full text (pdf)
    fulltext
  • 4.
    Hansson, Katarina
    et al.
    IVL Swedish Environmental Research Institute.
    Pütz, Kerstin
    IVL Swedish Environmental Research Institute.
    Vestergren, Robin
    IVL Swedish Environmental Research Institute.
    Kvantifiering av PFAS emissioner från kosmetiska produkter2020Report (Other academic)
    Abstract [sv]

    Miljögifterna PFAS bryts inte ner i naturen och kan inte renas bort i reningsverken. Ändå används de i en mängd produkter som kläder, matförpackningar och kosmetika. I en ny rapport som IVL har tagit fram på uppdrag av Naturskyddsföreningen beräknas för första gången hur stora utsläppen av PFAS kan vara från skönhetsprodukter i Sverige.

    Download full text (pdf)
    FULLTEXT01
  • 5.
    Pütz, Kerstin Winkens
    et al.
    IVL Swedish Environmental Research Institute. IVL Swedish Environmental Research Institute, Stockholm, Sweden.
    Namazkar, Shahla
    Department of Environmental Science, Stockholm University, Stockholm, Sweden.
    Plassmann, Merle
    Department of Environmental Science, Stockholm University, Stockholm, Sweden.
    Benskin, Jonathan P.
    Department of Environmental Science, Stockholm University, Stockholm, Sweden.
    Are cosmetics a significant source of PFAS in Europe? product inventories, chemical characterization and emission estimates2022In: Environmental Science: Processes & Impacts, ISSN 2050-7887, E-ISSN 2050-7895, Vol. 24, no 10, p. 1697-1707Article in journal (Refereed)
    Abstract [en]

    In this study, emission of per- and polyfluoroalkyl substances (PFAS) from the use of cosmetics in the European Economic Area (EEA; not including Lichtenstein and Iceland) was estimated for the first time.

    Using the European Commission database for information on cosmetic substances and ingredients (CosIng) ~170 structures containing at least –CF2– or –CF3 were identified as ingredients in cosmetics on the European market.

    These structures were then cross referenced against the Cosmetic Database “CosmEthics” to identify PFAS-containing products. Among these products, polytetrafluoroethylene (PTFE) and C9-15 fluoroalcohol phosphate were the most frequently listed PFAS ingredients.

    Thereafter,a sample of 45 cosmetics spanning 5 product categories was purchased in Sweden and characterized for total fluorine (TF), extractable organofluorine (EOF), and target PFAS. Using measured concentrations, the share of PFAS-containing products in each product category, sales data from Cosmetics Europe, as well as other parameters and assumptions, the annual emission of PFAS from cosmetics after use was estimated. Annual EEA-wide TF and EOF-based emissions ranged from 17–38 000 kg F per year and 37–5100 kg F per year, respectively, representing combined emission to wastewater and solid waste (low to high emission scenario).

    Sum perfluoroalkyl carboxylic acid (PFCA) emissions were considerably lower (21 kg PPFCAs per year; high scenario). While TF- and EOF-based emissions are significant, they are considerably lower than estimates of TF emission from washing of PFAS-coated textiles in the EU.

    This work provides the first estimate of PFAS emissions from cosmetics and highlights the importance of using a multi-platform analytical approach for PFAS emission estimates.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf