IVL Swedish Environmental Research Institute

ivl.se
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Moldanova, Jana
    et al.
    IVL Swedish Environmental Research Institute.
    Langner, Joakim
    Lindskog, Magnus
    Mårtensson, Tomas
    Priestley, Michael
    IVL Swedish Environmental Research Institute.
    Wall, Martin
    Ziverts, Ulrika
    Ekstrand, Henrik
    Näs, Anette
    Wilhelmsson, Jens
    IVL Swedish Environmental Research Institute.
    Optimisation of flight routes for reduced climate impact (OP-FLYKLIM)2022Report (Other academic)
    Abstract [en]

    The OP-FLYKLIM project investigated the potential to reduce the climate impact of aviation through climate optimization of flight routes to reduce the high-altitude effects of aviation with a focus on climate forcing from contrails and contrail cirrus under Scandinavian conditions. We have developed a calculation methodology where areas with potential to form persistent contrails are identified. The duration and climate forcing of contrails and contrail cirrus in these areas are calculated using data from SMHI's meteorological forecast model. Information on the position and climate forcing potential of these areas has been used to quantify climate forcing of flights on selected routes over a period of several months, and to test optimization of route planning for reduced climate effect with the flight planning system used by the airline Novair.

    Climate forcing from contrails and contrail cirrus during the flight calculated with the OP-FLYKLIM methodology is compared with calculations of climate forcing from the CO2 emitted from combustion of the jet fuel. This enables a direct comparison of the climate benefit of avoidance of contrail formation with its fuel penalty. In the future this method could be deployed in flight planning systems to enable climate optimization. The method can also be used in cost-benefit analyses of climate-optimized flight planning.

    We have also investigated several issues that are important for route optimization in general and for correct assessment of whether persistent contrails occur. Meteorological models of good quality in terms of forecasts of winds, temperature and humidity at flight altitude is of great importance both for ordinary route planning and for climate optimization. In OP-FLYKLIM, SMHI has tested streaming data from aircraft (so-called Mode-S EHS data) through air traffic control radars and local data receivers directly to their operational forecast model, which showed improved quality of forecasts.A persistent contrail occurs only if the humidity in the area of the flight is supersaturated relative to ice but is not already containing clouds.

    In the project, we have thus investigated the distribution of ice-saturated areas across Scandinavia as an average over several years using data from the ECMWF global numerical weather prediction (NWP) model. The results show a quite high potential for the formation of persistent contrails and thus for high-altitude effects in the area. Comparison to published data on the frequency of occurrence of ice supersaturated layers over Sweden and Europe indicate that observations and model data are broadly consistent. However, when comparing to observed relative humidity with respect to ice (RHI) from radiosondes directly it becomes clear that both the ECMWF model and the MetCoOp model used by SMHI for short range forecasts underestimate RHI near the tropopause, where most flights take place.

    As an additional means to evaluate the performance of NWP models with respect to ice supersaturation SMHI initiated observations of contrails by their climate observers. The observations were then matched against flights in the area and RHI calculated by the SMHI forecast model to determine if observations of persistent contrails also corresponded to ice supersaturation in the model. In agreement with the evaluation against radiosondes it was found that the NWP model underestimated RHI in connection with observed contrails.

    A correct calculation of fuel consumption and emissions during the flight is a prerequisite both for calculating its high-altitude effects and for monitoring of aviation emissions by national and international authorities. In OP-FLYKLIM the fuel consumption calculated with FOI3 methodology, used for the Swedish reporting of the national emissions from aviation to the UNFCCC and other international reporting obligations, has been compared with true fuel consumption obtained from data from the flight data recorder (FDR data) onboard aircraft on several routes. Comparison showed differences below 10% that could be explained by differences between route plans and type of aircraft in the FDR data and the FOI calculation, respectively.

    Download full text (pdf)
    fulltext
  • 2.
    Watne, Ågot K.
    et al.
    IVL Swedish Environmental Research Institute.
    Linden, Jenny
    IVL Swedish Environmental Research Institute.
    Willhelmsson, Jens
    IVL Swedish Environmental Research Institute.
    Fridén, Håkan
    IVL Swedish Environmental Research Institute.
    Gustafsson, Malin
    IVL Swedish Environmental Research Institute.
    Castell, Nuria
    Tackling Data Quality When Using Low-Cost Air Quality Sensors in Citizen Science Projects2021In: Frontiers in Environmental Science, E-ISSN 2296-665X, Vol. 9Article in journal (Refereed)
    Abstract [en]

    Using low-cost air quality sensors (LCS) in citizen science projects opens many possibilities.LCS can provide an opportunity for the citizens to collect and contributewith their own air qualitydata. However, low data quality is often an issue when using LCS and with it a risk of unrealisticexpectations of a higher degree of empowerment than what is possible. If the data quality andintended use of the data is not harmonized, conclusionsmay be drawn on the wrong basis anddata can be rendered unusable.

    Ensuring high data quality is demanding in terms of labor andresources. The expertise, sensor performance assessment, post-processing, as well as thegeneral workload required will depend strongly on the purpose and intended use of the airquality data. It is therefore a balancing act to ensure that the data quality is high enough for thespecific purpose, while minimizing the validation effort. The aim of this perspective paper is toincrease awareness of data quality issues and provide strategies to minimizing labor intensityand expenses while maintaining adequate QA/QC for robust applications of LCS in citizenscience projects.

    We believe that air quality measurements performed by citizens can be betterutilized with increased awareness about data quality and measurement requirements, incombination with improved metadata collection. Well-documented metadata can not onlyincrease the value and usefulness for the actors collecting the data, but it also the foundation forassessment of potential integration of the data collected by citizens in a broader perspective.

  • 3.
    Wilhelmsson, Jens
    et al.
    IVL Swedish Environmental Research Institute.
    Johansson, Torbjörn
    IVL Swedish Environmental Research Institute.
    Strand, Åsa
    IVL Swedish Environmental Research Institute.
    Wrange, Anna-Lisa
    IVL Swedish Environmental Research Institute.
    AI som verktyg för klassificering av  ostronyngel från havsbaserade kollektorer2021Report (Refereed)
    Abstract [sv]

    Den här studien är en fortsättning och vidareutveckling av ett tidigare projekt (Wilhelmsson et al.2020). I det tidigare projektet slogs det fast att det är möjligt att klassificera ostron som antingen Magallana gigas (fortsättningsvis endast Gigas) eller Ostrea edulis (fortsättningsvis endast Edulis) med hjälp av AI-baserad bildbehandlingsteknik.

    Ostronen som användes i det tidigare projektet hade tillåtits växa till sig under ca 11 månader i korgar efter att ha skördats från kollektorer och var även manuellt rengjorda innan fotografering.

    Det långsiktiga målet med ostronklassificeringen är att kunna sortera ostron automatiskt direkt när de skördas från kollektorer, eftersom det är i det skedet som ostronodlare är i störst behov av ensortering. Genom att sortera ostron direkt vid skörd från kollektorer säkerställs även att inga ostron hunnit bli könsmogna och därför heller inte hunnit föröka sig.

    Att sortera direkt från kollektor innebär dock att ostronen som ska klassificeras kommer vara blandade med kalkrester från kollektorerna, samt diverse havslevande organismer i form av marin påväxt.

    Därför behöver klassificeraren inte bara kunna se skillnad på olika ostronarter utan även identifiera vad i skörden från kollektorerna som är ostron och ej.

    Download full text (pdf)
    fulltext
  • 4.
    Wilhelmsson, Jens
    et al.
    IVL Swedish Environmental Research Institute.
    Strand, Åsa
    IVL Swedish Environmental Research Institute.
    Wrange, Anna-Lisa
    IVL Swedish Environmental Research Institute.
    Hunter, Karl
    IVL Swedish Environmental Research Institute.
    Johansson, Torbjörn
    IVL Swedish Environmental Research Institute.
    Klassificering av ostronyngel med hjälp av artificiell intelligens2020Report (Other academic)
    Abstract [sv]

    IVL har i ett samarbete mellan projekt finansierade av Jordbruksverket, Interreg (MarGenII) och H2020 (AquaVitae) utvecklat ett bildidentifieringsprogram som kan särskilja yngel av de inhemska platta ostronen i Sverige från de invasiva stillahavsostronen. Över 98 procent av bilderna klassificeras korrekt, visar projektets slutrapport

    Download full text (pdf)
    FULLTEXT01
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf