IVL Swedish Environmental Research Institute

ivl.se
Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bäckström, Sebastian
    et al.
    IVL Swedish Environmental Research Institute.
    Jivén, Karl
    IVL Swedish Environmental Research Institute.
    Biogas till tunga fordon drivna av flytande metan – Erfarenheter från lastbilar i trafik: Systemstudier inom projektet Västsvensk arena för flytande biogas2022Report (Other academic)
    Abstract [sv]

    Syftet med studien är att undersöka om lastbilar drivna med förvätskad biometan, LBM (eng. Liquid Bio Methane), i Sverige ofta benämnt LBG, kan användas på samma sätt som lastbilar med konventionell dieselmotor samt vilken klimatnytta som uppstår vid drift av förvätskad metan jämfört med dieselbränslen, fossila såväl som förnybara.

    Studien har besvarat frågan genom att jämföra driftsdata för ett kalenderår för sammanlagt 10 LBG-lastbilar och 6 diesellastbilar från 3 olika Åkerier. Genom att jämföra detaljerade data loggad i fordonens interna datasystem undersöks skillnader och likheter i hur de olika fordonstyperna presterar.

    Analysen visade på en likvärdig energianvändning och -330% lägre utsläpp av klimatpåverkande gaser för LBG-fordon tankade med förvätskad biometan (LBG) jämfört med dieselfordon tankade med rent biobränsle (HVO 100). Detta betyder att LBG fordonen när de är tankade med förvätskad biometan, där bränslet producerats med hög andel flytgödsel, redovisar negativa utsläpp av klimatpåverkande gaser, dvs. fordonen gör klimatnytta genom att förbränna metangas.

    Studiens slutsats är bland annat att det är möjligt för ett åkeri att ersätta dagens dieselfordon med LBG-fordon i fjärrtrafik med likvärdig energianvändning och betydande reduktioner av klimatpåverkande utsläpp.

    Download full text (pdf)
    fulltext
  • 2.
    Fridell, Erik
    et al.
    IVL Swedish Environmental Research Institute.
    Hansson, Julia
    IVL Swedish Environmental Research Institute.
    Jivén, Karl
    IVL Swedish Environmental Research Institute.
    Styhre, Linda
    IVL Swedish Environmental Research Institute.
    Romson, Åsa
    IVL Swedish Environmental Research Institute.
    Parsmo, Rasmus
    IVL Swedish Environmental Research Institute.
    Studie på sjöfartsområdet: Styrmedel och scenarier för sjöfartens omställning2022Report (Other academic)
    Abstract [sv]

    Sjöfarten står inför en stor omställning mot fossilfri drift av fartygen. Denna rapport beskriver styrmedel, tekniska frågor, hinder och scenarier för framtiden relaterat till denna utveckling. Inom IMO (International Maritime Organization) finns mål uppsatta för en minskning av utsläppen av växthusgaser från sjöfarten, styrmedel för kortsiktiga åtgärder finns på plats, främst avseende energieffektivisering, och mer långsiktiga ”market based measures” diskuteras. Inom EU finns ett antal förslag som när de implementeras kommer att få stor inverkan på sjöfarten och dess utsläpp av växthusgaser. I Sverige finns bland annat miljödifferentierade farledsavgifter och ecobonus, men ytterligare kraftfulla styrmedel krävs för att nå de mål om minskning av växthusgasutsläpp som satts upp.

    Det finns ett stort antal möjliga framtida hållbara marina bränslen som diskuteras t.ex. ammoniak, metan, metanol, vätgas och syntetisk diesel. I tillägg fortgår utvecklingen med ökad användning av eldrift.

    Ett antal scenarier presenteras i rapporten för utvecklingen av bränslemix och utsläpp av växthusgaser för svensk sjöfart, med syftet att analysera olika tänkbara styrmedel. Resultaten visar att el- och gasdrift kan bidra till att minska ökningen av emissioner av växthusgaser, men att ytterligare åtgärder behövs för att åstadkomma en sänkning av emissionerna. I ett scenario analyseras effekterna av de styrmedel som föreslås inom EU:s ”Fit for 55”.

    Det finns ett antal hinder som kan försena en utveckling mot ökad hållbarhet inom svensk sjöfart, både för eldrift och förnybara bränslen. Vidare diskuteras styrmedel som kan införas på nationell nivå. Här analyseras styrmedel för ökad användning av el, om en reduktionsplikt kan införas även för marina bränslen, en potentiell CO2-fond, investeringsstöd till ny teknik och bränsleinfrastruktur, klimatkrav på statens flotta, breddad ekobonus samt en vidareutveckling av miljödifferentierade farledsavgifter.

    Download full text (pdf)
    fulltext
  • 3.
    Hansson, Julia
    et al.
    IVL Swedish Environmental Research Institute.
    Davíðsdóttir, Brynhildur
    University of Iceland.
    Fridell, Erik
    IVL Swedish Environmental Research Institute.
    Jivén, Karl
    IVL Swedish Environmental Research Institute.
    Koosup Yum, Kevin
    Sintef Ocean AS.
    Latapí, Mauricio
    University of Iceland.
    Lundström, Helena
    IVL Swedish Environmental Research Institute.
    Parsmo, Rasmus
    IVL Swedish Environmental Research Institute.
    Stenersen, Dag
    Sintef Ocean AS.
    Wimby, Per
    Stena Rederi AB.
    Burgren, Johan
    PowerCell Sweden AB.
    HOPE - Hydrogen fuel cells solutions in Nordic shipping. Project summary: A Nordic Maritime Transport and Energy Research Programme Project2023Report (Other academic)
    Abstract [en]

    The Nordic countries aim for a carbon-neutral Nordic region. Maritime transport is one of the key remaining sectors to decarbonize and is important from a Nordic perspective due to the relatively large Nordic involvement in this industry. The HOPE project addresses how regional shipping in the Nordic region can do the transition to become fossil-free. The project aims at clarifying the potential role of hydrogen based marine solutions in reducing the Nordic greenhouse gas (GHG) emissions. In the centre of the project is a ship concept where a typical RoPax-vessel with operating distances of around 100 nautical miles is designed for including operation with hydrogen as fuel and fuel cells for energy conversion. The overall design of the concept ship is compared with selected other fuel alternatives from a cost perspective. 

    Further, both the conditions for designing such a ship and the consequences are studied. The conditions include technical design and costs of fuel systems and handling, powertrains etc. but also an analysis of barriers and drivers for the realisation of hydrogen solutions for shipping, such as economic, legal, and policy issues. For example, in terms of drivers, policy options needed to accelerate the uptake of hydrogen based marine solutions are assessed. Strategies and the potential of producing these fuels in the Nordic region are also reviewed from a shipping perspective. A realistic potential for uptake of these technologies/fuels by Nordic shipping are assessed and the benefits regarding lower emissions of GHGs and air pollutants are estimated. This report summarizes the assessments made in the HOPE project including main findings. 

    Download full text (pdf)
    fulltext
  • 4.
    Jivén, Karl
    et al.
    IVL Swedish Environmental Research Institute.
    Hjort, Anders
    IVL Swedish Environmental Research Institute.
    Bäckström, Sebastian
    IVL Swedish Environmental Research Institute.
    Systemstudier med flytande biogas till tunga fordon: Systemstudier inom projektet Västsvensk arena för flytande biogas2021Report (Other academic)
    Abstract [sv]

    Rapporten är en delredovisning inom projektet Västsvensk arena för flytande biogas. Framförallt beskrivs klimatnyttan av LBG-användning i tunga lastbilar och hur den ter sig med olika bedömningsprinciper i förhållande till alternativen konventionell diesel (Mk1) och HVO.

    Den sammantagna slutsatsen är att LBG som den produceras och används i de system vi studerar kan ses som en klimateffektiv verksamhet som ger nytta i form av exempelvis transportarbete till låg klimatpåverkan och på goda företagsekonomiska villkor för inblandade aktörer med rådande ekonomiska incitament. LBG som används i till exempel tunga lastbilar har inom ramen för detta arbete visat sig ha bättre klimatprestanda än alternativ som biodiesel i form av HVO.

    Download full text (pdf)
    fulltext
  • 5.
    Jivén, Karl
    et al.
    IVL Swedish Environmental Research Institute.
    Hjort, Anders
    IVL Swedish Environmental Research Institute.
    Malmgren, Elin
    Chalmers University of Technology.
    Persson, Emelie
    IVL Swedish Environmental Research Institute.
    Brynolf, Selma
    Chalmers University of Technology.
    Lönnqvist, Tomas
    IVL Swedish Environmental Research Institute.
    Särnbratt, Mirijam
    IVL Swedish Environmental Research Institute.
    Mellin, Anna
    IVL Swedish Environmental Research Institute.
    Can LNG be replaced with Liquid Bio-Methane (LBM) in shipping?2022Report (Other academic)
    Abstract [en]

    As per today (2021), in total some 500 TWh bunker fuel is consumed within the shipping sector annually within EU waters and approximately 25 TWh of this (5%) is LNG (Liquefied natural gas). The fleet of LNG fuelled vessels has grown steadily since the first vessels were introduced around year 2000. Predictions and scenarios indicate that in a couple of years, it is likely that around 15 % of all bunker fuels consumed in shipping will be LNG.Through detailed analyses of present and planned production capacity combined with scenarios built for future potential bio- and electro-methane production, a possibility to replace large amounts of LNG in shipping can be seen from a Swedish perspective.

    In total, the analysis shows a maximum scenario for LBM production (Liquefied Bio Methane) in Sweden year 2045 of nearly 30 TWh annually. This potential includes electro-methane production based on carbon dioxide that is naturally formed during the biogas digestion production process. All production, of methane being assessed as potential, is assessed to be based on sustainable sub¬strates and sustainably produced.This report shows that it could be possible to replace fossil LNG as a fuel in shipping with renewa¬ble LBM at a large scale from a Swedish perspective. The total bunkering of ships in Sweden are around 25 TWh per year, varies over time, and is dependant not only on which ships that calls Swe¬dish ports but also with the market competition with bunker suppliers in other countries. Should 15% of that fuel be LNG, it would be some 4 TWh LNG that could be interesting to switch towards renewable LBM.

    The potential shift in shipping in Sweden from LNG to LBM at a level of 4-6 TWh is assessed to be a realistic potential, but the shift will not happen unless the society gives the industry incentives that supports that shift and clearly shows the involved stakeholders that there is a long-term strat¬egy to enhance renewable methane production and consumption. It is especially important that pol¬icy instrument in the shipping sector is introduced that connects greenhouse gas emissions with a cost that can be avoided if fuels with low or zero emissions being used.Today, only a small proportion of bio-methane is liquefied to LBM in Sweden, while most of the planned production facilities for biogas will be for LBM, thanks to subsidies in the form of invest¬ment support and the decreased demand of CBG that benefits LBM.This report has chosen to use the expression Liquid Bio-Methane (LBM) due to the fact that the ex¬pression often used Liquid Bio Gas (LBG) does not cover the important part of the methane pro¬duced as an electrofuel based on carbon dioxide from the digestion process and also not really in¬cludes the methanation of syngas from gasification plants.A Swedish production support in combination with the introduction of shipping within the EU emission trading scheme (ETS) seems too possibly even out the cost difference between LNG and LBG as a marine fuel or at least give a significantly smaller barrier to overcome.To establish the environmental rationale of this product, life cycle assessments of the production of LBM and the use in the shipping sector were performed. No previous scientific studies have been identified which look into the performance of using electrofuel pathways of LBM in the shipping sector. The results are presented in the report together with an analysis of potential future issues to observe.

    Download full text (pdf)
    fulltext
  • 6.
    Jivén, Karl
    et al.
    IVL Swedish Environmental Research Institute.
    Parsmo, Rasmus
    IVL Swedish Environmental Research Institute.
    Fridell, Erik
    IVL Swedish Environmental Research Institute.
    Hansson, Julia
    IVL Swedish Environmental Research Institute.
    Lundström, Helena
    IVL Swedish Environmental Research Institute.
    Wimby, Per
    Stena Rederi AB.
    Burgren, Johan
    PowerCell Sweden AB.
    Koosup Yum, Kevin
    Sintef Ocean.
    Stenersen, Dag
    Sintef Ocean.
    Concept design and environmental analysis of a fuel cell RoPax vessel - Report in the HOPE (Hydrogen fuel cells solutions in shipping in relation to other low carbon options) project2023Report (Other academic)
    Abstract [en]

    This report includes a ship concept design developed for a RoPax ship (a ferry transporting passengers and goods) with hydrogen fuel cell propulsion for intended operations on the route Frederikshavn (Denmark) to Gothenburg (Sweden). The assessments, performed within the HOPE (Hydrogen fuel cells solutions in shipping in relation to other low carbon options – a Nordic perspective) project, shows that it is technically feasible to build and operate such a ship with existing technology for the studied route between these two Nordic countries. Also, the costs of such a concept are assessed and compared to other fuel options including: battery-electric propulsion, electro-ammonia, electro-methanol, biomass-based methane, or fossil liquefied natural gas (LNG), as well as conventional fossil marine gas oil (MGO).

    The overall result from the comparative analysis of the estimated costs is that the hydrogen fuel cell ship, when assuming current or near future costs for the technology and the hydrogen, is estimated to be some 25 percent more expensive than a conventional fossil fuelled (MGO) RoPax ship (when including costs for emissions in the EU emission trading scheme). However, the cost developments are uncertain. In the case that fuel cell prices, and hydrogen prices, are decreasing, and todays cost levels of emission allowances in the EU emission trading scheme (ETS) increase, the hydrogen fuel cell ship could possibly be operated at lower total costs compared to the MGO fuelled ship.

    A cost benefit analysis was also performed, comparing costs linked to the technical implementation of hydrogen fuel cell solutions in shipping (with a private and social perspective) to benefits in terms of reduced external costs linked to lower emissions and potential subsides. The cost benefit assessment also confirms that the investment from a private perspective is not cost effective and that additional subsidies may be needed for investments in fuel cell hydrogen technology to take place. The cost effectiveness from a social perspective is strongly dependent on values of highly uncertain parameters.

    The impacts of emissions of hydrogen as fuel in a Nordic context were assessed for deployment scenarios for hydrogen and fuel cell solutions in Nordic shipping. There is a considerable potential for emission reductions both in terms of CO2, nitrogen oxides (NOX), sulphur dioxide (SO2) and particulate matter (PM) linked to the implementation of hydrogen and fuel cells in Nordic shipping, particularly in the RoPax segment, representing 30% of total CO2 emissions in 2018. Considering the relatively long lifetime of vessels, investments must be made soon to enable a hydrogen powered shipping fleet in the near future. Since it is currently not economically viable with hydrogen and fuel cells vessels there is need for subsidies and investments in pilots to develop solutions and speed up the process. 

    Download full text (pdf)
    fulltext
  • 7. Koroschetz, Bianca
    et al.
    Sköld, Sara
    IVL Swedish Environmental Research Institute.
    Wrange, Anna-Lisa
    IVL Swedish Environmental Research Institute.
    Jivén, Karl
    IVL Swedish Environmental Research Institute.
    Harrie, Per
    IVL Swedish Environmental Research Institute.
    Eko Marina II - Fortsättningsprojekt av miljömärkning av fritidsbåtshamnar: Underlag för att vidareutveckla miljömärkningssystem för fritidsbåtshamnar som syftar till att minska belastningen på vattenmiljön2021Report (Other academic)
    Abstract [sv]

    Inom projektet ”Miljömärkning av fritidsbåtshamnar” – Eko Marina I, (Koroschetz m.fl., 2020) tog IVL Svenska Miljöinstitutet tillsammans med Havsmiljöinstitutet fram ett miljöindex för fritidsbåtshamnar, som består av en samling skräddarsydda kriterier för att minska miljöföroreningarna från verksamheter kopplade till fritidsbåtshamnar. I fortsättningsprojektet Eko Marina II var syftet att utveckla och förbättra miljöindexet, samt att utvärdera tillämpningsbarheten av indexet i samarbete med olika typer av fritidsbåtshamnar. Detta gjordes genom att via en enkät testa de tidigare framtagna indexkriterierna i samverkan med 17 olika fritidsbåtshamnar. Utifrån inkomna svar på enkäten, samt kompletterande kommentarer från fritidsbåtshamnar och andra aktörer, har ett omarbetat förslag på index tagits fram, kallat Index 2.0, som är lämpligt för alla typer av hamnar – gästhamnar, hamnar som drivs av ideella föreningar, såväl som kommersiella fritidsbåtshamnar.

    Projektet har också tagit fram stöddokumentation med förklaringar och checklistor för olika kriterier i miljöindexet (till exempel förslag till en miljöpolicy) samt handlingsplaner för olika miljöproblem, till exempel för förorenade områden. Förutom att utveckla miljöindexet vidare har projektet resulterat i ett första konkret förslag till affärsmodell som inkluderar en app och hemsida samt potentiella samarbetspartners. Rapporten presenterar också de förväntande positiva effekterna för fritidsbåtshamnar t. ex ett konkret stöd i miljöarbetet, men också ekonomiska incitament för att vara med i miljömärkningen. Här beskrivs också hur miljömärkningen kan underlätta miljötillsynen för kommunerna och fritidsbåtshamnar.

    Download full text (pdf)
    fulltext
  • 8.
    Parsmo, Rasmus
    et al.
    IVL Swedish Environmental Research Institute.
    Jivén, Karl
    IVL Swedish Environmental Research Institute.
    Measures to Reduce Emissions from Ships A case study: An early evaluation of the potentials of digitalization and changed framework for port calls in the Port of Gävle.2020Report (Other academic)
    Abstract [en]

    Many ports today want to improve the information flow in the logistics chain to be able to make port calls more efficient and thereby reduce the waiting times for ships, terminals and other operators in the logistics chain. The Port of Gävle is part of two ongoing projects, where digital tools and improvement of the current regulatory and structural framework in the port are being evaluated. The example calculations made in this study show that the potential to reduce emissions at sea is great even at minor speed reductions. For example, the annual greenhouse gas emissions for all incoming vessels would decrease by 8 300 tonnes of CO2-e if the ships would lower their speed at sea from last port by only 5%. This can be compared to effects from a shorter time at berth that not only can reduce emissions from ships quayside but also from ships at anchor, due to shorter waiting times. The potential reduction with 7% shorter times at berth is between 600 and 900 tonnes of CO2-e/year and the reduction at anchor is estimated to be between 825 and 3 860 tonnes of CO2-e/year.

    Download full text (pdf)
    FULLTEXT01
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf