IVL Swedish Environmental Research Institute

ivl.se
Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    de Jong, Annelise
    et al.
    IVL Swedish Environmental Research Institute.
    Borisova, Stanislava
    IVL Swedish Environmental Research Institute.
    Hallberg, Lisa
    IVL Swedish Environmental Research Institute.
    Sondal, Jonas
    IVL Swedish Environmental Research Institute.
    Molin, Elvira
    IVL Swedish Environmental Research Institute.
    Lidfeldt, Matilda
    IVL Swedish Environmental Research Institute.
    LCA Systemanalys av återanvändbara förpackningar för take-away mat och dryck2023Report (Other academic)
    Abstract [en]

    This study is reported by IVL Swedish Environmental Research Institute on behalf of the Swedish Environmental Protection Agency and investigates the environmental impact of reusable packaging for takeaway food and beverages. The report serves as a basis for a government assignment carried out by the Swedish Environmental Protection Agency and the National Food Agency to produce guidance and guidelines for reusable food boxes and cups (M2021/02087). In the new regulation (2021: 996) on disposable products, increased requirements for reuse of packaging are in place from January 2024 including registration of reuse systems at the Swedish Environmental Protection Agency. There are also requirements for actors to inform their customers about the environmental impact of the use of disposable packaging and about the benefits of reduced consumption of the packaging.

    The Swedish Environmental Protection Agency has commissioned this study to develop knowledge on the environmental impact of reusable packaging and to show advantages of these over single-use packaging, based on the entire life cycle from the manufacture of reusable packaging to several use cycles, and waste management. Materials that were analyzed for mugs are fossil-based plastics, biobased plastics, and steel, and for boxes materials are fossil-based plastics, biobased plastics, glass, and steel.

    A system analysis (LCA) was applied to answer the following questions in the study:

    How (when and how) brought reusable cups and lunchboxes should be used?

    Which materials for reusable cups and lunchboxes should be used to maximize environmental benefits?

    Results show that raw material extraction dominates for all material alternatives, except for fossil plastics where the incineration in the waste stage also has a significant climate impact. If not accounting for the fact that glass or steel can be used more times than plastic, glass and steel have a much higher impact than plastic due to higher weight since steel also has a greater climate impact per kg of material when manufacturing the material. Still the study signals that fossil-based plastic (in this study PP) is probably the worst material from a climate point of view, which is largely due to the fact that incineration of the container sooner or later contributes to fossil climate impact.

    The bio-based plastic alternative is good from a climate point of view, mainly because the combustion of a bio-based material does not contribute to fossil climate impact, but also because the impact of production of the material is lower, although this is uncertain as the data used in this study is based on an LCA published by a single supplier. For steel packaging the challenge in the analysis was partly to try to do this material justice as it can be used more times than the plastic materials, but also that it has been difficult to define a product weight that is representative in comparison with the other materials. The study also shows that glass (which is only related to food boxes in this study) is a good option. The choice of material for mugs or boxes is thus important and should involve consideration of the durability of the material(s) in terms of number of usages.

    Transport has a relatively small impact overall, but the transport to "users" is visible even if it means less than the cleaning. The heavier the mug/box is, the greater the impact from transport. The cleaning is an important part but is relatively small compared to the raw material phase of packaging production. Non-centralized cleaning has not been analyzed but should give a lower impact (due to no transport), but possibly a higher impact (due to less efficiency), and this could possibly weigh each other out, but has not been analysed. 

    Download full text (pdf)
    fulltext
  • 2.
    Gottfridsson, Marie
    et al.
    IVL Swedish Environmental Research Institute.
    Hallberg, Elisabet
    IVL Swedish Environmental Research Institute.
    Simplified LCA of Nilar NiMH battery pack (EC 10Ah, 144V) - Report within the Grön BoStad Stockholm project2019Report (Other academic)
    Abstract [en]

    This subproject has been carried out within the framework of the Grön BoStad Stockholm project, funded by the European Regional Development Fund.

    The report includes a life cycle assessment (LCA) study of a Nilar Nickel-metal hydride battery pack (EC 10Ah, 144V) carried out by IVL Environmental Research Institute on behalf of Nilar AB. The goal of this project is to provide knowledge of the environmental strengths and weaknesses of the Nilar NiMH battery pack from a cradle to gate perspective. The material composition of the battery was provided by Nilar.

    The study is made on a Nilar EC 144V battery pack, which can store up to 1.44 kWh of energy. The functional unit is 1 kWh of stored energy which corresponds to 0.7 battery packs.

    For the cradle to gate approach, the gate is the Nilar production site i.e. when the battery pack is ready to be delivered to customers. The cradle means the production of fuels, electricity, raw materials and extraction of natural resources. It also covers relevant transportation. The actual production of the battery at Nilar as well as the production of components by suppliers are however omitted since the process is assessed to have a minor impact.

    This study is simplified, only based on an inventory of the bill of materials provided by Nilar AB i.e. kg of materials such as metals and different polymers. Data applied for the materials are based on generic database data mostly representing EU averages. The data applied for production of raw materials has been extracted from thinkstep/GaBi databases and EcoInvent database.

    Data gaps and assumptions regarding key materials in this study will affect the result since these materials correspond to high percentages of the total battery weight. Production of compounds such as rare metals can also have a high environmental impact in their extraction and production phases. Due to lack of data for production of one of the rare metals it has been approximated as equal to production of a close neighbour in the periodic system. For one substance within the electrolyte, a similar compound was used as an approximation.

    Transportation of materials has been included on a rough level. For materials produced in China or Asia a long-distance sea transport from Shanghai to Europe has been applied, while for all other materials an assumption of 1000 km truck has been assumed. These are fair assumptions since the total impact from transportation is small in relation to the production of the materials. Also, electricity use from the production phase has been excluded since it was assessed to be small in relation to the total impact.

    The impact categories used in the study are Global warming potential (Climate change), Acidification potential, Eutrophication potential, Photochemical ozone creation potential and Abiotic resource depletion potential (ADP) elements. Categories used for LCA-results are Renewable and Non-renewable energy resources.

      The production of one of the rare metals was approximated with production of a close neighbour in the periodic system. The share of the metal is very low, but the data applied corresponds to a very high impact resulting in a contribution to the total climate change. This is the most uncertain assumption made in this study and has a significant effect on the final result.

    The negative electrode corresponds to the highest share of the total climate change impact with 47% followed by the positive electrode with 24% and contact plate/case with 18%. For abiotic resource depletion potential, the negative electrode corresponds to the highest share of total impact with 71% of the total followed by the positive electrode with 23%.

    Download full text (pdf)
    FULLTEXT01
  • 3.
    Hallberg, Elisabet
    et al.
    IVL Swedish Environmental Research Institute.
    Andersson, Simon
    IVL Swedish Environmental Research Institute.
    Nellström, Maja
    IVL Swedish Environmental Research Institute.
    Life cycle assessment of closed loops for industrial plastic packaging2023Report (Other academic)
    Abstract [en]

    The project Closing the loop of industrial plastic aims to increase the circular use of materials from industrial plastic packaging through closed loop recycling. Within this project, a study has been made where the goal was to compare the climate change impact of four different scenarios for three case studies.

    The four main scenarios are Closed loop recycling, Closed and open loop recycling, Open loop recycling, and Incineration and the three case studies included in the study are Packaging made of expanded polystyrene (EPS), big bags made of polypropylene (PP) and film made of low-density polyethylene (LDPE).

    For all three case studies, the main conclusion is that the climate impact is lower for closed loop recycling than for all three alternatives mentioned above. Additionally, the study identifies the second-best option as a mix of Closed and open loop recycling, followed by Open loop recycling, and finally, Incineration.

    Download full text (pdf)
    Life cycle assessment of closed loops for industrial plastic packaging
  • 4.
    Hallberg, Elisabet
    et al.
    IVL Swedish Environmental Research Institute.
    Dahllöf, Lisbeth
    IVL Swedish Environmental Research Institute.
    TraceMet - Calculation and Reporting Rules - Traceability – a pilot for sustainable metals and minerals (TraceMet)2021Report (Other academic)
    Abstract [en]

    This document was compiled during 2020 and early 2021 within the TraceMet project, funded by the strategic innovation program Swedish Mining Innovation, a joint investment of Vinnova, Formas and the Swedish Energy Agency. The document contains the Product Category Rules (PCR) - the methodology rules for how to calculate and report carbon footprint and recycled content for metal products. The document contains the Product Category Rules (PCR) - the methodology rules for how to calculate and report carbon footprint and recycled content for metal products and Specific Methods, Assumptions and Data (SMAD) for the two pilots with specific metal qualities.

    Download full text (pdf)
    FULLTEXT01
  • 5.
    Hallberg, Elisabet
    et al.
    IVL Swedish Environmental Research Institute.
    Hjort, Anders
    IVL Swedish Environmental Research Institute.
    Strömberg, Emma
    IVL Swedish Environmental Research Institute.
    Miljöbedömning av matavfallsemballage - Livscykelanalys av olika påsalternativ2018Report (Other academic)
    Abstract [en]

    Matavfall används ofta i Sverige för att producera biogödsel och biogas. Olika typer av matavfallsemballage (matavfallspåsar) kan användas för insamling av matavfall, t ex: plastpåsar av polyeten (fossil- eller bio-baserade), påsar från material baserade på majs- eller potatisstärkelse, papperspåsar. Alternativen har olika egenskaper och olika fördelar och nackdelar. Många kommuner i Sverige ställer krav på en specifik typ av emballage som ska användas. Idag finns det inga speciella krav för matavfallsemballage för insamling av matavfall i Uppsala kommun och hushållen väljer själva vilken typ av påse som används. Uppsala Vatten vill undersöka om det ur hållbarhetssynpunkt finns skäl att göra förändringar av dagens insamlingssystem. I den här studien gjordes en miljöutvärdering av olika typer av matavfallsemballage för insamling från hushåll. Projektets syfte var att adressera frågeställningen hur matavfallsemballage av olika material påverkar klimatprestandan för insamling och rötning av matavfall.

    Studien har, genom livscykelanalys (LCA), utforskat, utvärderat och dokumenterat klimatpåverkan från olika matavfallsemballage längs hela värdekedjan. Olika fördelar och nackdelar av materialval samt distribution av matavfallspåsar har också identifierats med hjälp av intervjuer med olika kommuner och företag i Sverige. De olika typerna av påsar för matavfallsemballage som har analyserats i den här studien är: fossil polyeten (PE), (bärkasse och avfallspåse på rulle); återvunnen PE (bärkasse och avfallspåse på rulle), bio-baserad PE (bärkasse och avfallspåse på rulle) samt kompostpåse (papper).

    En viktig del av en LCA-beräkning är att sätta systemgränser för vilka delar av livscykeln som beräkningen ska täcka in. Detta beror i sin tur på hur produkten används. I denna studie har t. ex. inte tillverkningen av råvara och påse tagits med i beräkningen för plastbärkassar p.g.a. att de främst är tillverkade för att användas till ett annat ändamål. För avfallspåse på rulle och kompostpåse av papper inkluderas däremot denna tillverkning eftersom dessa påsar enbart är avsedda att användas som matavfallsemballage.

    Resultaten visar att bärkassen av bio-baserad PE faller bäst ut ur klimatsynpunkt eftersom utsläppet av koldioxid (CO2) vid förbränning av bio-baserad PE är biogent och därmed enligt praxis inte räknas som ett bidrag till antropogen klimatpåverkan och dessutom exkluderas tillverkningen av råvara och påse. Det bör dock påpekas att valet av en bio-baserad PE bärkasse sällan är ett val man som konsument själv kan styra över eftersom tillgången regleras av butikernas val av material i påsar.

    Om man enbart jämför påsar som produceras för ändamålet att samla in matavfall (där ”uppströms produktion” inkluderas) är papperspåse (kompostpåse) bästa alternativet, och avfallspåse på rulle av fossil PE faller ut sämst ur klimatsynpunkt. Att kompostpåse av papper är det mest gynnsamma alternativet, beror främst på att utsläppet av koldioxid (CO2) vid förbränning av papper är biogent (analogt med fallet för bio-baserad PE). Påverkan från tillverkningen av råvaran (papper) samt påstillverkningen är också lägre för papperspåsen.

    Under studien observerades dock att resultaten är mycket känsliga för vissa osäkra parametrar, t ex: antagande om volym av matavfall per påse, mängder av producerad biogödsel och biogas samt biogödselkvalitet. Känslighetsanalyser visade att dessa parametrar kan påverka jämförelsen mellan påsarna och behöver därmed studeras mer för att säkerställa pålitliga resultat.

    Download full text (pdf)
    FULLTEXT01
  • 6.
    Lidfeldt, Matilda
    et al.
    IVL Swedish Environmental Research Institute.
    Nellström, Maja
    IVL Swedish Environmental Research Institute.
    Sandin Albertsson, Gustav
    IVL Swedish Environmental Research Institute.
    Hallberg, Elisabet
    IVL Swedish Environmental Research Institute.
    Siptex WP5 report: Life cycle assessment of textile recycling products2022Report (Refereed)
    Abstract [en]

    This report presents a life cycle assessment (LCA) of recycling products from the automated textile-sorting plant Siptex in Malmö, Sweden.

    The recycling products are sorted fractions of cotton, polyester, and wool. The LCA aims to increase knowledge of the environmental performance of the Siptex plant, in terms of reducing the incineration of textile waste and providing a new source of material to the textile industry.

    The three recycling products are assessed by studying four garments made of the recycling products and comparing these to garments made of primary material. 

    Download full text (pdf)
    LCA Report WP5 SIPTex
  • 7.
    Liljenroth, Anna
    et al.
    IVL Swedish Environmental Research Institute.
    Gunnarsson, Josefin
    IVL Swedish Environmental Research Institute.
    Hallberg, Elisabet
    IVL Swedish Environmental Research Institute.
    Tegstedt, Fredrik
    IVL Swedish Environmental Research Institute.
    EPD-vägledning och företagsanpassning av EPD-verktyg: En pilotstudie tillsammans med medlemmar inom Trä- och Möbelföretagen2021Report (Other academic)
    Abstract [sv]

    Denna rapport är den andra och sista rapporten från ett forskningsprojekt som finansierats av Trä- och Möbelföretagen (TMF) och Stiftelsen IVL.

    I projektet har IVLs EPD-verktyg anpassats åt ett flertal medlemmar inom segmentet kök, badrum och möbler. Som resultat kan dessa företag efter projektet prova på att skapa produktspecifikt underlag för EPD via verktyget. Arbete har även innefattat framtagande av en arbetsprocess för företagsanpassning av EPD-verktyget och vilken demonstrerats genom företagens medverkan i projektet. Utöver detta har nödvändiga  branschgemensamma miljödata identifierats och tillgängliggjorts i verktyget.

    En vägledning har även tagits fram i projektet som syftar till att pedagogiskt beskriva EPD, hur de kan skapas och hur informationen i dem kan tillämpas. Vägledningen riktar sig främst till företag som planerar eller nyligen påbörjat sitt arbete med EPD (IVL-rapport B2432).  

    Det sammantagna arbetet och resultatet av projektet sammanfattas i denna rapport.

    Download full text (pdf)
    fulltext
  • 8.
    Neuwirth, Josefin
    et al.
    IVL Swedish Environmental Research Institute.
    Gottfridsson, Marie
    IVL Swedish Environmental Research Institute.
    Rydberg, Tomas
    IVL Swedish Environmental Research Institute.
    Hallberg, Elisabet
    IVL Swedish Environmental Research Institute.
    A ProScale case study on indoor wall paint2022Report (Other academic)
    Abstract [en]

    ProScale is a method to assess toxicity potentials for products in a life cycle perspective, in its current version covering direct human exposure related toxicity potential. It is designed to be useful on its own or alongside other impact categories in life cycle assessment (LCA). The study reported herein was conducted by examination of the ProScale model in a case study on indoor wall paint. The reason for choosing indoor wall paint was that the EU commission has paint as one of their pilots for Product Environmental Footprint (PEF), and a particular purpose of the case study was to showcase the applicability of ProScale in PEF. The ProScale assessment on indoor wall paint was simplified due to time limitation in scope. 

    Download full text (pdf)
    fulltext
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf