IVL Swedish Environmental Research Institute

ivl.se
Endre søk
Begrens søket
1 - 7 of 7
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Fagerström, Anton
    et al.
    IVL Svenska Miljöinstitutet.
    Abdelaziz, Omar
    Poulikidou, Sofia
    Lewrén, Adam
    Hulteberg, Christian
    Wallberg, Ola
    Rydberg, Tomas
    Economic and Environmental Potential of Large-Scale Renewable Synthetic Jet Fuel Production through Integration into a Biomass CHP Plant in Sweden2022Inngår i: Energies, E-ISSN 1996-1073, Vol. 15, nr 3, s. 1114-1114Artikkel i tidsskrift (Fagfellevurdert)
  • 2.
    Hansson, Julia
    et al.
    Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, Hörselgången 4, 412 96 Gothenburg, Sweden;IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Klugman, Sofia
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Lönnqvist, Tomas
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Elginoz, Nilay
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Granacher, Julia
    Industrial Process and Energy Systems Engineering (IPESE), École Polytechnique Fédérale de Lausanne, 1951 Sion, Switzerland.
    Hasselberg, Pavinee
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Hedman, Fredrik
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Efraimsson, Nora
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Johnsson, Sofie
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Poulikidou, Sofia
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Safarian, Sahar
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Tjus, Kåre
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Biodiesel from Bark and Black Liquor—A Techno-Economic, Social, and Environmental Assessment2023Inngår i: Energies, E-ISSN 1996-1073, Vol. 17, nr 1, s. 99-99Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A techno-economic assessment and environmental and social sustainability assessments of novel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill serves as the reference case and large-scale biofuel-production-process integration is explored. Relatively low greenhouse gas emission levels can be obtained for the FT biodiesel (total span: 16–83 g CO2eq/MJ in the assessed EU countries).

    Actual process configuration and low-carbon electricity are critical for overall performance. The site-specific social assessment indicates an overall positive social effect for local community, value chain actors, and society. Important social aspects include (i) job creation potential, (ii) economic development through job creation and new business opportunities, and (iii) health and safety for workers.

    For social risks, the country of implementation is important. Heat and electricity use are the key contributors to social impacts. The estimated production cost for biobased crude oil is about 13 €/GJ, and it is 14 €/GJ (0.47 €/L or 50 €/MWh) for the FT biodiesel. However, there are uncertainties, i.e., due to the low technology readiness level of the gasification technologies, especially wet gasification. However, the studied concept may provide substantial GHG reduction compared to fossil diesel at a relatively low cost.

  • 3.
    Hansson, Julia
    et al.
    Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, Hörselgången 4, 412 96 Gothenburg, Sweden;IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Klugman, Sofia
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Lönnqvist, Tomas
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Elginoz, Nilay
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Granacher, Julia
    Industrial Process and Energy Systems Engineering (IPESE), École Polytechnique Fédérale de Lausanne, 1951 Sion, Switzerland.
    Hasselberg, Pavinee
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Hedman, Fredrik
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Efraimsson, Nora
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Johnsson, Sofie
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Poulikidou, Sofia
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Safarian, Sahar
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Tjus, Kåre
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Biodiesel from Bark and Black Liquor—A Techno-Economic, Social, and Environmental Assessment2023Inngår i: Energies, E-ISSN 1996-1073, Vol. 17, nr 1, s. 99-99Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A techno-economic assessment and environmental and social sustainability assessments ofnovel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill serves as the reference case and large-scale biofuel-production-process integration is explored. Relatively low greenhouse gas emission levels can be obtained for the FT biodiesel (total span: 16–83 g CO2eq/MJ in the assessed EU countries). Actual process configuration and low-carbon electricity are critical for overall performance.

    The site-specific social assessment indicates an overall positive social effect for local community, value chain actors, and society. Important social aspects include (i) job creation potential, (ii) economic development through job creation and new business opportunities, and (iii) health and safety for workers. For social risks, the country of implementation is important. Heat and electricity use are the key contributors to social impacts.The estimated production cost for biobased crude oil is about 13 €/GJ, and it is 14 €/GJ (0.47 €/L or50 €/MWh) for the FT biodiesel. However, there are uncertainties, i.e., due to the low technologyreadiness level of the gasification technologies, especially wet gasification. However, the studiedconcept may provide substantial GHG reduction compared to fossil diesel at a relatively low cost.

  • 4.
    Lygnerud, Kristina
    IVL Svenska Miljöinstitutet.
    Business Model Changes in District Heating: The Impact of the Technology Shift from the Third to the Fourth Generation Energies2019Inngår i: Energies, E-ISSN 1996-1073, Vol. 12, nr 9, s. 1788-Artikkel i tidsskrift (Fagfellevurdert)
  • 5. Lygnerud, Kristina
    et al.
    Langer, Sarka
    Urban Sustainability: Recovering and Utilizing Urban Excess Heat2022Inngår i: Energies, E-ISSN 1996-1073, Vol. 15, nr 24, s. 9466-9466Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Urban heat sources from urban infrastructure and buildings could meet ~10% of theEuropean building heating demand.

    There is, however, limited information on how to use them. The EU project ReUseHeat has generated much of the existing knowledge on urban waste heat recovery implementation. Heat recovery from a data center, hospital and from water were demonstrated. Additionally, the project generated knowledge of stakeholders, risk profile, bankability and business models.

    The recovery of urban waste heat is characterized by high potential, high competitiveness compared to other heating alternatives, high avoidance of GHG emissions, payback within three years and low utilization. These characteristics reveal that barriers for increased utilization exist.

    The barriers are not technical. Instead, the absence of a waste heat EU level policy adds risk. Other showstoppers are low knowledge on the urban waste heat opportunity and new stakeholder relationships being needed for successful recovery.

    By combining key results and lessons learned from the project this article outlines the frontier of urban waste heat recovery research and practicein 2022.

  • 6.
    Mata, Erika
    et al.
    IVL Svenska Miljöinstitutet.
    Cabeza, LF
    Chàfer, M
    Comparative Analysis of Web of Science and Scopus on the Energy Efficiency and Climate Impact of Buildings2020Inngår i: Energies, E-ISSN 1996-1073, Vol. 13, nr 2, s. 409-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Although the body of scientific publications on energy efficiency and climate mitigation from buildings has been growing quickly in recent years, very few previous bibliometric analysis studies exist that analyze the literature in terms of specific content (trends or options for zero-energy buildings) or coverage of different scientific databases. We evaluate the scientific literature published since January 2013 concerning alternative methods for improving the energy efficiency and mitigating climate impacts from buildings. We quantify and describe the literature through a bibliometric approach, comparing the databases Web of Science (WoS) and Scopus. A total of 19,416 (Scopus) and 17,468 (WoS) publications are analyzed, with only 11% common documents. The literature has grown steadily during this time period, with a peak in the year 2017. Most of the publications are in English, in the area of Engineering and Energy Fuels, and from institutions from China and the USA. Strong links are observed between the most published authors and institutions worldwide. An analysis of keywords reveals that most of research focuses on technologies for heating, ventilation, and air-conditioning, phase change materials, as well as information and communication technologies. A significantly smaller segment of the literature takes a broader perspective (greenhouse gas emissions, life cycle, and sustainable development), investigating implementation issues (policies and costs) or renewable energy (solar). Knowledge gaps are detected in the areas of behavioral changes, the circular economy, and some renewable energy sources (geothermal, biomass, small wind). We conclude that (i) the contents of WoS and Scopus are radically different in the studied fields; (ii) research seems to focus on technological aspects; and (iii) there are weak links between research on energy and on climate mitigation and sustainability, the latter themes being misrepresented in the literature. These conclusions should be validated with further analyses of the documents identified in this study. We recommend that future research focuses on filling the above identified gaps, assessing the contents of several scientific databases, and extending energy analyses to their effects in terms of mitigation potentials

  • 7. Trinh, Jenny
    et al.
    Harahap, Fumi
    Fagerström, Anton
    Hansson, Julia
    What Are the Policy Impacts on Renewable Jet Fuel in Sweden?2021Inngår i: Energies, E-ISSN 1996-1073, Vol. 14, nr 21, s. 7194-7194Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The aviation industry’s contribution to global human-induced CO2-emissions is expected to increase to 3% by 2050 as demand for aviation grows. An essential component for a carbon-neutral growth is low-carbon, sustainable aviation fuels, for example alternative drop-in fuels with biobased components.

     

    This study aims at answering how combining different policies for the aviation sector can support the production of renewable jet fuel (RJF) in Sweden while reducing greenhouse gas emissions. The results demonstrate the importance of implementing policy instruments to promote the production of RJF in Sweden.

     

    The current level of the penalty fee is not sufficient to support the fuel switch to RJF. A higher blending mandate and carbon price will accelerate the transition towards renewable and sustainable fuels for the aviation industry.

1 - 7 of 7
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0