IVL Swedish Environmental Research Institute

ivl.se
Endre søk
Begrens søket
1 - 11 of 11
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Anderson, Sara
    et al.
    IVL Svenska Miljöinstitutet.
    Hjort, Anders
    IVL Svenska Miljöinstitutet.
    Lönnqvist, Tomas
    IVL Svenska Miljöinstitutet.
    Ryding, Sven-Olof
    IVL Svenska Miljöinstitutet.
    Lundmark, Robert
    Söderholm, Patrik
    Establishing local biogas transport systems: Policy incentives and actor networks in Swedish regions2020Inngår i: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 145Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Biogas from waste and residues is a renewable transportation fuel, which can contribute directly to the fulfillment of several of the UN Sustainable Development Goals. In this paper, we address the question of how biogas value chains, and the respective actor networks, emerge at the local level. The purpose of the paper is to empirically assess the development of local biogas transport systems in three Swedish regions, and how policy – including so-called network management – can support this development. The analysis draws on an analytical framework describing how emerging actor networks can be strengthened, and multiple data collection methods (personal interviews, workshop, and secondary sources). The results indicate that four factors explain the success of developing effective local biogas systems: (i) a clear political vision and an adequate basis for decision-making; (ii) a reliance on green public procurement giving priority to biogas vehicles (including follow-up); (iii) integrated actor networks, facilitating knowledge development and sharing of information; and (iv) strategies to deal with an uneven system growth.

  • 2.
    Fagerström, Anton
    et al.
    IVL Svenska Miljöinstitutet.
    Lönnqvist, Tomas
    IVL Svenska Miljöinstitutet.
    Anderson, Sara
    IVL Svenska Miljöinstitutet.
    Kunskapssyntes: Samhällsekonomisk analys av förnybara drivmedel och drivlinor2019Rapport (Annet vitenskapelig)
    Abstract [sv]

    Sammantaget har projektet identifierat 7 huvudsakliga kunskapsluckor där kompletterande material behöver tas fram för att en mer rättvisande bedömning ska kunna göras mellan olika drivmedelsalternativ.

    Kunskapssyntesen visar tydligt att resultatet i en samhällsekonomisk analys beror på hur systemgränserna sätts från början. Vidare så ses i analysen att det är möjligt att styra utfallet av en jämförande bedömning mot ett visst resultat genom de aspekter som ingår. Det går att säga att ett mer korrekt resultat fås fram ju fler parametrar som ingår, ju bredare systemgränserna sätts och ju fler aspekter som vägs in.

    Å andra sidan så använder de jämförda studierna så pass olika metodik att det är svårt att dra några slutsatser mellan dessa och utfallet i de olika studiernas ranking. För vissa av aspekterna används mer standardiserade och/eller etablerade metoder för värdering av eventuell nytta. Generellt för biodrivmedel saknas kunskap, forskningsunderlag och metoder för att i kronor värdera ett stort antal nyttor som är viktiga för vårt samhälle.

    Fulltekst (pdf)
    FULLTEXT01
  • 3.
    Fridahl, Mathias
    et al.
    Linköping University.
    Schenuit, Felix
    German Institute for International and Security Affairs.
    Lundberg, Liv
    Research Institute of Sweden.
    Möllersten, Kenneth
    IVL Svenska Miljöinstitutet.
    Böttcher, Miranda
    German Institute for International and Security Affairs.
    Rickels, Wilfried
    Kiel Institute for the World Economy.
    Hansson, Anders
    Linköping University.
    Novel carbon dioxide removals techniques must be integrated into the European Union’s climate policies2023Inngår i: Communications Earth & Environment, E-ISSN 2662-4435, Vol. 17, nr 1, artikkel-id 459Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In comparison to its emissions reductions policy, the European Union’s (EU) policy for achieving carbon dioxide (CO2) removals is underdeveloped. Only in forestry and land use management does current EU law allow its Member States to use removals to comply with their climate policy commitments. This excludes the potential role that novel removals could play for effectively and efficiently addressing climate policy objectives. Novel removals with significant European potential include bioenergy with carbon capture and storage, biochar, enhanced weathering, marine removal options like alkalinity enhancement, and direct air carbon capture and storage. Emissions reductions are crucial to mitigating climate change. However, in the past decade, the world community’s failure to reduce emissions at a sufficient speed to avoid dangerous climate change has become obvious.

    This reality acutely necessitates the development of innovative sets of policies to spur the deployment of novel CO2 removals, an urgency that is further underlined by the long lead time for many novel removal methods. Disregarding the potential of novel removals is incommensurate with the scale of the challenge of achieving EU’s commitment to reach net-zero greenhouse gas emissions by 2050. We argue that the current policy framework neither provides Union-wide economic incentives for novel CO2 removals, nor does it encourage EU Member States to develop national policy incentives. Our proposed solutions includes incentivizing removals through a conditional integration into the EU Emissions Trading System (ETS), expanding the portfolio of removal methods in the Land-Use, Land-Use Change and Forestry (LULUCF) Regulation, and to manage anticipations regarding which residual emissions that need to be counterbalanced by removals.

  • 4.
    Gustavsson Binder, Tobias
    et al.
    IVL Svenska Miljöinstitutet.
    Hjort, Anders
    IVL Svenska Miljöinstitutet.
    Persson, Emelie
    IVL Svenska Miljöinstitutet.
    Hasselberg, Pavinee
    IVL Svenska Miljöinstitutet.
    Hedayati, Ali
    IVL Svenska Miljöinstitutet.
    Safarianbana, Sahar
    IVL Svenska Miljöinstitutet.
    Lysenko, Olga
    IVL Svenska Miljöinstitutet.
    Chi Johansson, Nina
    IVL Svenska Miljöinstitutet.
    Lönnqvist, Tomas
    IVL Svenska Miljöinstitutet.
    Nilsson, Linnea
    IVL Svenska Miljöinstitutet.
    Hydrogen from biogas as fuel for buses in cold climate - Analysing the feasibility to produce hydrogen from local biogas and use in city buses in Luleå2024Rapport (Annet vitenskapelig)
    Abstract [en]

    In this study, we demonstrate that in certain cases, it can be advantageous to produce hydrogen from biogas and to use it in heavy-duty vehicles such as buses. In Luleå, it may be feasible to use hydrogen from biogas in city buses because there is a need for heating where waste heat from the fuel cell can be utilized. However, it is uncertain whether the waste heat is sufficient or if a separate auxiliary heater driven by diesel or HVO is needed. If such a heater is required, the conclusion is that hydrogen from biogas is suitable for other segments of heavy transportation, where battery electrification is not as suitable. Overall, our study shows that hydrogen from biogas may be interesting as a transitional fuel to increase the availability of environmentally friendly hydrogen until electrolyzer capacity is sufficiently expanded.

    At the same time, our mapping of the policy landscape concerning hydrogen and zero-emission buses shows that biohydrogen is disadvantaged in the EU's regulations on renewable hydrogen. This means that member states are restricted from providing support for investments to produce and distribute hydrogen from biogas and other biogenic feedstocks. The reason is that renewable hydrogen, according to EU terminology, is defined in the so-called delegated act on renewable fuels of non-biological origin (RFNBO). It is established that renewable hydrogen should be based on non-biological feedstocks (i.e., from electrolysis) and must meet a number of criteria.

    The results are interesting in the context of urban bus traffic rapidly moving towards zero-emission operation. In Sweden and many other countries, battery buses have become a common and obvious feature on city streets. But just like for other segments of heavy-duty vehicles, another technology to achieve zero-emission operation has also received increased attention, namely hydrogen and fuel cell buses. In Sweden, only a few fuel cell buses have been used - and moreover, only on a trial basis - but in several European cities, they have already begun to be used on a significant scale. An advantage of fuel cell operation with hydrogen from biogas is that it allows for the continued utilization of the biogas already produced and purchased for existing city bus traffic.

    System study consisting of two parts

    We arrived at the result by investigating the suitability of both producing hydrogen from biogas at the existing sewage treatment plant in Luleå and the feasibility for LLT to use fuel cell buses in its city bus traffic. The study has considered both costs associated with each part and climate impact from a life cycle perspective for fuel production and bus operation.

    Fulltekst (pdf)
    Hydrogen from biogas as fuel for buses in cold climate
    Fulltekst (pdf)
    Vätgas från biogas i kallt klimat - populärvetenskaplig sammanfattning
  • 5.
    Hansson, Julia
    et al.
    Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, Hörselgången 4, 412 96 Gothenburg, Sweden;IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Klugman, Sofia
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Lönnqvist, Tomas
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Elginoz, Nilay
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Granacher, Julia
    Industrial Process and Energy Systems Engineering (IPESE), École Polytechnique Fédérale de Lausanne, 1951 Sion, Switzerland.
    Hasselberg, Pavinee
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Hedman, Fredrik
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Efraimsson, Nora
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Johnsson, Sofie
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Poulikidou, Sofia
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Safarian, Sahar
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Tjus, Kåre
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Biodiesel from Bark and Black Liquor—A Techno-Economic, Social, and Environmental Assessment2023Inngår i: Energies, E-ISSN 1996-1073, Vol. 17, nr 1, s. 99-99Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A techno-economic assessment and environmental and social sustainability assessments of novel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill serves as the reference case and large-scale biofuel-production-process integration is explored. Relatively low greenhouse gas emission levels can be obtained for the FT biodiesel (total span: 16–83 g CO2eq/MJ in the assessed EU countries).

    Actual process configuration and low-carbon electricity are critical for overall performance. The site-specific social assessment indicates an overall positive social effect for local community, value chain actors, and society. Important social aspects include (i) job creation potential, (ii) economic development through job creation and new business opportunities, and (iii) health and safety for workers.

    For social risks, the country of implementation is important. Heat and electricity use are the key contributors to social impacts. The estimated production cost for biobased crude oil is about 13 €/GJ, and it is 14 €/GJ (0.47 €/L or 50 €/MWh) for the FT biodiesel. However, there are uncertainties, i.e., due to the low technology readiness level of the gasification technologies, especially wet gasification. However, the studied concept may provide substantial GHG reduction compared to fossil diesel at a relatively low cost.

  • 6.
    Hansson, Julia
    et al.
    Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, Hörselgången 4, 412 96 Gothenburg, Sweden;IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Klugman, Sofia
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Lönnqvist, Tomas
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Elginoz, Nilay
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Granacher, Julia
    Industrial Process and Energy Systems Engineering (IPESE), École Polytechnique Fédérale de Lausanne, 1951 Sion, Switzerland.
    Hasselberg, Pavinee
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Hedman, Fredrik
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Efraimsson, Nora
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Johnsson, Sofie
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Poulikidou, Sofia
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Safarian, Sahar
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Tjus, Kåre
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Biodiesel from Bark and Black Liquor—A Techno-Economic, Social, and Environmental Assessment2023Inngår i: Energies, E-ISSN 1996-1073, Vol. 17, nr 1, s. 99-99Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A techno-economic assessment and environmental and social sustainability assessments ofnovel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill serves as the reference case and large-scale biofuel-production-process integration is explored. Relatively low greenhouse gas emission levels can be obtained for the FT biodiesel (total span: 16–83 g CO2eq/MJ in the assessed EU countries). Actual process configuration and low-carbon electricity are critical for overall performance.

    The site-specific social assessment indicates an overall positive social effect for local community, value chain actors, and society. Important social aspects include (i) job creation potential, (ii) economic development through job creation and new business opportunities, and (iii) health and safety for workers. For social risks, the country of implementation is important. Heat and electricity use are the key contributors to social impacts.The estimated production cost for biobased crude oil is about 13 €/GJ, and it is 14 €/GJ (0.47 €/L or50 €/MWh) for the FT biodiesel. However, there are uncertainties, i.e., due to the low technologyreadiness level of the gasification technologies, especially wet gasification. However, the studiedconcept may provide substantial GHG reduction compared to fossil diesel at a relatively low cost.

  • 7.
    Holmgren, Kristina
    et al.
    IVL Svenska Miljöinstitutet.
    Lönnqvist, Tomas
    IVL Svenska Miljöinstitutet.
    Berntsson, T.
    Profitability and Greenhouse Gas Emissions of Gasification-based Biofuel Production - analysis of sector specific policy instruments and comparison to conventional biomass conversion technologies.2018Inngår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 165, nr Part A, s. 997-1007Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The required level of a sector specific CO2e-cost in the transport sector to make the net annual profit (NAP) of three different gasification based biofuel production systems positive (systems profitable) is investigated. The analysis is made for two different energy market scenarios for 2030 and 2040. The results show that the additional required sector specific CO2e-cost (additional to a sector wide general cost) is not higher than the current level of CO2e-tax in Sweden. The required total level of CO2e-cost for the transport sector is in the 450 ppmv scenario in general higher than the current CO2-tax level but not higher than the fuel tax level (including also energy tax).The study also compares the NAP and greenhouse gas (GHG) emission reduction potential of the gasification-based systems to a system where the biomass is used in conventional bio-CHP to produce heat and power and where the power is used in the transport sector (in battery electric vehicles (BEV)). Under the investigated energy market scenarios the bio-CHP and BEV system has higher NAP and higher GHG emission reduction potential. However, the bio-CHP system has a stronger dependency on the availability of large heat sinks and profits from a high price of delivered heat.

  • 8.
    Jivén, Karl
    et al.
    IVL Svenska Miljöinstitutet.
    Hjort, Anders
    IVL Svenska Miljöinstitutet.
    Malmgren, Elin
    Chalmers University of Technology.
    Persson, Emelie
    IVL Svenska Miljöinstitutet.
    Brynolf, Selma
    Chalmers University of Technology.
    Lönnqvist, Tomas
    IVL Svenska Miljöinstitutet.
    Särnbratt, Mirijam
    IVL Svenska Miljöinstitutet.
    Mellin, Anna
    IVL Svenska Miljöinstitutet.
    Can LNG be replaced with Liquid Bio-Methane (LBM) in shipping?2022Rapport (Annet vitenskapelig)
    Abstract [en]

    As per today (2021), in total some 500 TWh bunker fuel is consumed within the shipping sector annually within EU waters and approximately 25 TWh of this (5%) is LNG (Liquefied natural gas). The fleet of LNG fuelled vessels has grown steadily since the first vessels were introduced around year 2000. Predictions and scenarios indicate that in a couple of years, it is likely that around 15 % of all bunker fuels consumed in shipping will be LNG.Through detailed analyses of present and planned production capacity combined with scenarios built for future potential bio- and electro-methane production, a possibility to replace large amounts of LNG in shipping can be seen from a Swedish perspective.

    In total, the analysis shows a maximum scenario for LBM production (Liquefied Bio Methane) in Sweden year 2045 of nearly 30 TWh annually. This potential includes electro-methane production based on carbon dioxide that is naturally formed during the biogas digestion production process. All production, of methane being assessed as potential, is assessed to be based on sustainable sub¬strates and sustainably produced.This report shows that it could be possible to replace fossil LNG as a fuel in shipping with renewa¬ble LBM at a large scale from a Swedish perspective. The total bunkering of ships in Sweden are around 25 TWh per year, varies over time, and is dependant not only on which ships that calls Swe¬dish ports but also with the market competition with bunker suppliers in other countries. Should 15% of that fuel be LNG, it would be some 4 TWh LNG that could be interesting to switch towards renewable LBM.

    The potential shift in shipping in Sweden from LNG to LBM at a level of 4-6 TWh is assessed to be a realistic potential, but the shift will not happen unless the society gives the industry incentives that supports that shift and clearly shows the involved stakeholders that there is a long-term strat¬egy to enhance renewable methane production and consumption. It is especially important that pol¬icy instrument in the shipping sector is introduced that connects greenhouse gas emissions with a cost that can be avoided if fuels with low or zero emissions being used.Today, only a small proportion of bio-methane is liquefied to LBM in Sweden, while most of the planned production facilities for biogas will be for LBM, thanks to subsidies in the form of invest¬ment support and the decreased demand of CBG that benefits LBM.This report has chosen to use the expression Liquid Bio-Methane (LBM) due to the fact that the ex¬pression often used Liquid Bio Gas (LBG) does not cover the important part of the methane pro¬duced as an electrofuel based on carbon dioxide from the digestion process and also not really in¬cludes the methanation of syngas from gasification plants.A Swedish production support in combination with the introduction of shipping within the EU emission trading scheme (ETS) seems too possibly even out the cost difference between LNG and LBG as a marine fuel or at least give a significantly smaller barrier to overcome.To establish the environmental rationale of this product, life cycle assessments of the production of LBM and the use in the shipping sector were performed. No previous scientific studies have been identified which look into the performance of using electrofuel pathways of LBM in the shipping sector. The results are presented in the report together with an analysis of potential future issues to observe.

    Fulltekst (pdf)
    fulltext
  • 9.
    Klugman, Sofia
    et al.
    IVL Svenska Miljöinstitutet.
    Stripple, Håkan
    IVL Svenska Miljöinstitutet.
    Lönnqvist, Tomas
    IVL Svenska Miljöinstitutet.
    A climate neutral Swedish industry – An inventory of technologies2019Rapport (Annet vitenskapelig)
    Abstract [en]

    In year 2017, about 27 percent of the greenhouse gas emissions in Sweden originated from the industries. This equals to 17,203 thousand tonnes carbon dioxide equivalents. Within the Swedish industry, the four industrial sectors with the largest climate gas release are Iron and steel, Cement, Refineries and Chemicals. This report focuses on these four sectors which together emit 80 percent of the industrial greenhouse gas emissions in Sweden. Each of these sectors have several possible pathways to become climate neutral. In this report some possible pathways are described and discussed.

    In order to reach climate neutrality, transformative changes such as new processes and use of new raw material are needed. This is because a vast part of the emissions in all the sectors in question originates from the processes themselves or the use of fossil feedstock, not only from energy use. Many of the options are technically immature and there are many years of development left before they could be implemented in large scale.

    Several technical challenges exist which are related to the processes, but in addition, there are several barriers of non-technical nature for the transformation. For example, supply and price of raw materials, uncertain market for new products and even some legal barriers. Furthermore, some of the options require development of infrastructure, for example the electrification of steel and cement production demands strengthening of the electric grids and increased production of renewable electricity.

    Fulltekst (pdf)
    FULLTEXT01
  • 10.
    Lönnqvist, Tomas
    et al.
    IVL Svenska Miljöinstitutet.
    Anderberg, S.
    Ammenberg, J.
    Sandberg, T.
    Grönkvist, S.
    Stimulating biogas in the transport sector – an actor and policy analysis with supply side focus.2019Inngår i: Renewable and Sustainable Energy Reviews, Vol. 113, artikkel-id 109269Artikkel i tidsskrift (Fagfellevurdert)
  • 11.
    Nyberg, Theo
    et al.
    IVL Svenska Miljöinstitutet.
    Klugman, Sofia
    IVL Svenska Miljöinstitutet.
    Särnbratt, Mirjam
    IVL Svenska Miljöinstitutet.
    Nojpanya, Pavinee
    IVL Svenska Miljöinstitutet.
    Hjort, Anders
    IVL Svenska Miljöinstitutet.
    Persson, Emelie
    IVL Svenska Miljöinstitutet.
    Fagerström, Anton
    IVL Svenska Miljöinstitutet.
    Lönnqvist, Tobias
    IVL Svenska Miljöinstitutet.
    Bioenergianläggning Otterbäcken2022Rapport (Fagfellevurdert)
    Abstract [sv]

    Transportsektorns efterfrågan på biodrivmedel ökar när klimatomställningen ska omsättas i praktik. Sverige har goda förutsättningar att producera dessa drivmedel och det finns flertalet orter runt om i landet där förutsättningarna för biodrivmedelsproduktion är goda. Gullspångs kommun har under de senaste tio åren fört en dialog med Västra Götalandsregionen om möjligheten att etablera en bioenergikombinatanläggning i Otterbäcken för att nyttja de goda förutsättningar som finns med tillgång på råvara samt goda logistiska förutsättningar med bland annat djuphamnen. I detta projekt har en utredning gjorts för att ta fram kommersiellt relevanta investeringskoncept för en bioenergikombinatanläggning i Otterbäcken, och resultaten pekar på intressanta förutsättningar för en anläggning för produktion av flytande biometan (Liquified biogas, LBG).

    Projektet har utgått från en äldre förstudie där förutsättningarna för en bioenergikombinat-anläggning som producerar torrefierad biomassa undersöktes. Kunskaperna från denna tidigare studie har kompletterats med nya kartläggningar av relevanta tekniker och lokala råvaror som kan ingå i ett investeringskoncept för en anläggning som producerar biodrivmedel som kan användas i befintliga tunga lastbilar. Kartläggningen omfattade sju olika tekniker som utifrån de uppdaterade kartläggningarna kondenserades ned till två investeringskoncept för djupare undersökning av investeringskoncept. Det ena konceptet var en anläggning för produktion av pyrolysolja från skogsrester och det andra konceptet var en anläggning för produktion av LBG, men på grund av en högre teknologisk mognadsgrad samt större intresse från referensgruppen för det senare konceptet (LBG) så fick detta ett större fokus i projektet.

    De två fördjupade investeringskoncepten inkluderade teknikbeskrivning, skiss på affärsmodell med hjälp av referensgruppen, ekonomisk bedömning av lönsamheten i investeringen samt en beräkning av klimatpåverkan för drivmedlet (endast för LBG-konceptet).

    Resultaten visar att det ser ut att finnas både råvaror för, teknik till och förutsättningar för en god ekonomi i en anläggning för produktion av LBG. Råvarusituationen behöver bekräftas genom kontakter med råvaruleverantörer, tekniken kan behöva viss utvärdering för att hitta etablerade teknikleverantörer med pålitlig teknik och de ekonomiska förutsättningarna är beroende av investerings- och produktionsstöd för att kunna vara kommersiellt intressanta. Trots dessa osäkerheter är den samlade bedömningen att det kan vara aktuellt för en aktör eller grupp av aktörer med intresse av att äga och driva en biogasanläggning att ta vid där projektet slutar för att på sikt gå vidare med en investering i en anläggning.

    Fulltekst (pdf)
    fulltext
1 - 11 of 11
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.44.0