IVL Svenska Miljöinstitutet

ivl.se
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gaussian process regression for monitoring and fault detection applications at wastewater treatment processes
IVL Svenska Miljöinstitutet.
IVL Svenska Miljöinstitutet.
2017 (Engelska)Ingår i: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 75, nr 12Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), at WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data).

We showed that the GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and was not robust enough for WWTP monitoring applications. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs.

However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios.

Ort, förlag, år, upplaga, sidor
2017. Vol. 75, nr 12
Identifikatorer
URN: urn:nbn:se:ivl:diva-3722DOI: 10.2166/wst.2017.162OAI: oai:DiVA.org:ivl-3722DiVA, id: diva2:1572932
Anmärkning
A-rapport, A2279Tillgänglig från: 2021-06-24 Skapad: 2021-06-24

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Björk, AndersSamuelsson, Oscar
Av organisationen
IVL Svenska Miljöinstitutet
I samma tidskrift
Water Science and Technology

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 57 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf