The occurrence of abandoned, lost, and discarded fishing gear (ALDFG) in aquatic environments contributes both to environmental and socioeconomic impacts. In nature, discarded fishing gear can release both macro- and microplastics as well as harmful chemicals and thereby contribute to pollution of water bodies and the degradation of habitats. This study is a further development of the project Quantification and environmental pollution aspects of lost fishing gear in the Nordic countries (Unsbo et al., 2022).
The project intends to compile information from the HELCOM-countries on the quantity and composition of lost fishing gear, originating mainly from recreational fishing. The study also considers the occurrence of harmful chemicals associated with the lost fishing gear and the potential impact of these chemicals on the aquatic environment. Suggestions on how to prevent further losses and mitigate negative impact of lost fishing gear are also provided.
The HELCOM-countries included in this report are Denmark, Estonia, Finland & Åland, Germany, Latvia, Lithuania, Poland, and Sweden. This study is based on several methodological approaches to obtain and compare data from different sources. It includes a literature survey, a stakeholder dialogue, an analysis of sales statistics from retailers and producers of fishing gear and national import and export statistics. A web-based questionnaire specifically directed towards gaining information from recreational fishers was developed and disseminated. The data generated from the questionnaire was then compared with official national statistics.
The quantity and composition of lost fishing gear are difficult to estimate mainly due to the general lack of data within this area. In this study, estimations of lost gear such as fishing line, baits and sinkers were calculated. It is, however, important to recognise that estimates of lost fishing gear in the HELCOM-countries are rough and based on many assumptions, combined with a low response rate on the questionnaire.Sweden, Finland, Denmark, and Estonia have national statistics on the number of recreational fishers available for the public. This group encompasses around 1.7 million persons in Sweden, 1.5 million in Finland, 0.3 million in Denmark as well as 68 000 in Estonia. The other countries do not have any national statistics on the number of recreational fishers.
The following number of fishers were estimated for the other countries: 174 000 in Germany, 41 000 in Latvia, 60 000 in Lithuania, and 84 000 in Poland. The number of fishers were multiplied by the average amount of gear lost per person and year obtained from the questionnaire results. The estimated number of lost fishing gear by the HELCOM-countries thus amounts to 21 million baits, 9 million sinkers and 96 million metres of fishing line per year. The questionnaire generated 145 replies of which 94 respondents were from Sweden, 32 from Lithuania and 19 from Estonia.
National statistics on imports, exports and industrial production do not specify the intended user of the specific fishing gear. However, due to the specificity in behaviours and equipment of the type of fisher, it can be assumed that some of the commodity codes are likely to correspond either to sport and recreational fishing or to commercial fishing. Based on this assumption, the project has estimated total annual losses in the Nordic countries of 337 tonnes fishhooks, 78 – 745 million meters fishing line.
Because of the large amount of fishing gear lost at sea, their presence is likely to have negative effects on aquatic ecosystems. Plastic additives and associated chemicals constitute a plethora of harmful substances that can leach from plastic materials. Fishing plummets made of lead are also problematic since lead is toxic. The use of lead in sinkers and plummets is already banned in Denmark and similar restrictions are likely to be introduced in all HELCOM-countries due to the possible coming proposal from the EU Commission (ECHA, 2022).
The most common types of plastic used in fishing gear are Polyethylene (PE), Polypropylene (PP) and Polyamide (PA or nylon). Some common additives in plastics are stabilizers, fillers, colorants, antioxidants, flame retardants and plasticizers. Even if harmful substances do exist in fishing gear it has not, within the framework of this study, been possible to quantify the annual amount released to the environment. The necessary information on additives and chemicals present in fishing gear has not been reported or has never been analysed.
Producers and resellers of fishing gear, contacted in this study could not or were unwilling to share information about the chemical contents of their products even though REACH stipulates that suppliers should provide information about SVHC (substances of high concern) present in their products in concentrations over 0.1 % (weight by weight) within 45 days.
We suggest the following measures to reduce the occurrence and impacts of lost fishing gear; 1) municipalities and retailers should provide information on the topic to increase the awareness among fishers, 2) incitements to reuse, recycle or recover fishing gear should be improved, 3) better information on chemical substances present in fishing gear, 4) ban of harmful substances including lead in fishing gear and 5) conduct clean ups of hotspots which also will contribute to reduce new losses. Implementation of the EU Single-Use Plastics Directive and upcoming extended producer responsibility including fishing gear in the HELCOM-countries are important drivers supporting this positive development.
In conclusion, the estimates presented here should be considered indicative of potential losses of fishing gear in the HELCOM-countries. By using two different and independent methods to collect data for estimating losses of fishing gear, we have aimed to shed light on the uncertainty in our estimates. Furthermore, we provide all assumptions and calculations for transparency. Even though the methods to some extent give similar results, the figures are overestimated due to our conservative assumptions based on the precautionary principle and better data is needed to provide more reliable decision support.