IVL Swedish Environmental Research Institute

ivl.se
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Simon
    et al.
    IVL Swedish Environmental Research Institute.
    Gottfridsson, Marie
    IVL Swedish Environmental Research Institute.
    LCA of zinc phosphating and thin film pre-treatment2023Report (Other academic)
    Abstract [en]

    LCA of zinc phosphating and thin film pre-treatment.

    Download full text (pdf)
    fulltext
  • 2.
    Björk, Anders
    et al.
    IVL Swedish Environmental Research Institute.
    Gregertsen, Björn
    SP Process Development.
    Pajalic, Oleg
    Perstorp AB.
    Stenemyr, Anna
    SP Process Development.
    PI-Nordic - A strategic research and innovation agenda for process intensification and innovation in process industries2015Report (Other (popular science, discussion, etc.))
    Abstract [en]

    A continued and sustainable growth in the Process Industry sector remains essential for Sweden’s economy. The strategic research agenda PI-Nordic describes a vison and way forward for the development and implementation of Process Intensification (PI) as an essential element for promoting this development. The agenda covers the chemical, water, forest, food, drug and mining industries, the equipment manufacturers and suppliers, the build-up of knowledge and expertise in academia and research institutes, and the essential role of funding bodies.

    Download full text (pdf)
    fulltext
  • 3.
    Björk, Anders
    et al.
    IVL Swedish Environmental Research Institute.
    Tjus, Kåre
    IVL Swedish Environmental Research Institute.
    Pourrahimi, A.M.
    Andersson, R.L.
    Ström, V.
    Olsson, R.T.
    Making an ultralow platinum content bimetallic catalyst on carbon fibres for electro-oxidation of ammonia in wastewater2019In: Sustainable Energy & Fuels, E-ISSN 2398-4902Article in journal (Refereed)
    Abstract [en]

    Electrocatalysis of wastewater containing ammonia is a promising alternative to chemical and biological water purification for several reasons, one being that energy-rich hydrogen gas is generated as a by-product while the reaction can be strictly controlled to meet demands. An objective has been to reduce the loading of expensive platinum (Pt) in the catalyst electrodes, and to reduce the poisoning of the metal surface during the electrolysis. Herein, the co-deposition of a copper–platinum (Cu–Pt) bimetallic alloy onto carbon filaments, stripped from their polymeric coating, is shown to give an electrocatalytic performance superior to that of pure Pt at a content of less than 3 wt% Pt. The key to the enhanced performance was to take advantage of micrometer-sized carbon filaments to distribute a very large bimetallic alloy surface uniformly over the filaments. The Cu–Pt-alloy-coated filaments also suffer less electrode poisoning than pure Pt, and are bonded more strongly to the carbon fibre due to better mechanical interlocking between the bimetallic alloy and the carbon filaments. High-resolution electron microscopy studies combined with a tuned electro-deposition process made it possible to tailor the catalyst micro/nano morphology to reach a uniform coverage, surrounding the entire carbon filaments. The results are promising steps towards large-scale wastewater treatment, combined with clean energy production from regenerated hydrogen.

  • 4.
    Fagerström, Anton
    et al.
    IVL Swedish Environmental Research Institute.
    Abdelaziz, Omar
    Poulikidou, Sofia
    Lewrén, Adam
    Hulteberg, Christian
    Wallberg, Ola
    Rydberg, Tomas
    Economic and Environmental Potential of Large-Scale Renewable Synthetic Jet Fuel Production through Integration into a Biomass CHP Plant in Sweden2022In: Energies, E-ISSN 1996-1073, Vol. 15, no 3, p. 1114-1114Article in journal (Refereed)
  • 5.
    Fagerström, Anton
    et al.
    IVL Swedish Environmental Research Institute.
    Klugman, Sofia
    IVL Swedish Environmental Research Institute.
    Nyberg, Theo
    IVL Swedish Environmental Research Institute.
    Karltorp, Kersti
    IVL Swedish Environmental Research Institute.
    Hernández Leal, Maria
    IVL Swedish Environmental Research Institute.
    Nojpanya, Pavinee
    IVL Swedish Environmental Research Institute.
    Johansson, Kristin
    IVL Swedish Environmental Research Institute.
    BeKind - Circularity and climate benefit of a bio- and electro-based chemical industry - effects of transitions in petrochemical value chains2022Report (Other academic)
    Abstract [en]

    This document reports the finding from the project BeKind: Circularity and climate benefit of a Bio- and Electro-based Chemical Industry - effects of transitions in petrochemical value chains. The aim of the BeKind-project has been to identify challenges for transition to a circular and climate-neutral petrochemical industry, to develop proposals for remedial activities for these obstacles and challenges, and to quantify the benefits such a transition can have for circularity, climate and social sustainability. The focus of the project has been on industrial production of liquid fuels and plastics. 

    Download full text (pdf)
    fulltext
  • 6.
    Storm, Benjamin
    et al.
    IVL Swedish Environmental Research Institute.
    Mammen Parayil, Manuel
    IVL Swedish Environmental Research Institute.
    Nilsson, Linnea
    IVL Swedish Environmental Research Institute.
    Rydberg, Tomas
    IVL Swedish Environmental Research Institute.
    Techno-economic and sustainability assessment: Circular cellulose to textile fiber production2023Report (Other academic)
    Abstract [en]

    This document reports the findings from the techno-economic and sustainability assessment done in the project Circular cellulose to textile fiber production. The aim of the project has been to develop resource efficient processes for alternative cellulose feedstocks from residual streams to increase value for dissolving pulp, for e.g., textile fiber production. In this report, a techno-economic feasibility study and an environmental impact assessment were done to give an indication of the market relevance and climate impact of wheat straw and oat husk as raw materials for the production of dissolving pulp.

    Download full text (pdf)
    fulltext
  • 7.
    Strömberg, Emma
    et al.
    IVL Swedish Environmental Research Institute.
    Norin, Helena
    IVL Swedish Environmental Research Institute.
    Munthe, John
    IVL Swedish Environmental Research Institute.
    Lihammar, Richard
    IVL Swedish Environmental Research Institute.
    Opportunities and obstacles for a green chemical industry in Sweden2023Report (Other academic)
    Abstract [en]

    This report summarises the results of a set of initiatives taken to identify opportunities and obstacles for the vision to enable a safe, green and sustainable chemical industry, and ultimately reduce the exposure of humans and ecosystems to hazardous chemicals. It represents a mid-term result in the Swedish research programme Mistra SafeChem’s work to present vision and agenda for green chemistry in Sweden. The target group for this report is internal (Mistra SafeChem programme partners) as well as external for all parties interested in the transition to a safe, green and sustainable chemistry.  

    The report is based on the results of several activities/components: an overview of existing concepts for “Green Chemistry”, industry initiatives and the EU Chemical Strategy for Sustainability; a previously published mapping of the Swedish chemical industry; a compilation and analysis of data on import, production and use of selected chemical groups from the Swedish products register and the results of interviews with representatives of chemical industries in Sweden are summarised. 

    Based on the results of these activities a number of obstacles and opportunities have been formulated along with general conclusions and recommendations for the enabling of the transition to a safe, green and sustainable chemistry. The main conclusions can be summarised as: 

    The EU Chemical strategy for sustainability and associated industry initiatives as well as current and planned research initiatives provide a strong framework for coordinated action towards a vision of safe, sustainable and green chemistry. 

    Chemical value chains are complex, international/global and include all societal sectors. Mapping chemical production and use with the purpose of analysing risks and prioritising areas for action/development is thus difficult and involves many actors. The chemical industry is also a heterogenous group of companies with activities ranging from small scale production of e.g. speciality chemicals and pharmaceuticals to large-scale production of base chemicals for a variety of applications and value chains. Different parts of the chemical industry also have widely differing conditions in terms of markets and market competition, industrial infrastructure, financial strength which all affect the possibility for change and introduction of new green and sustainable production methods and products. 

    Research, innovation and investments are central to the future development. Specific challenges are the needs for reliable and low-cost tools for assessment of chemical hazards of both new chemicals and existing chemicals in new materials and applications, and for assessing hazards and risks of chemicals and materials in a life cycle perspective. This is also important in relation to the development of methods to operationalize the Safe and Sustainable by Design concept. Other challenges are the development of innovative production processes, chemicals and materials which fulfil criteria of safety and sustainability and contribute to societal needs including abatement of climate change. 

    Download full text (pdf)
    fulltext
  • 8.
    Töpel, Mats
    et al.
    IVL Swedish Environmental Research Institute.
    Osman, Omneya
    IVL Swedish Environmental Research Institute.
    Almasi, Alexandra
    IVL Swedish Environmental Research Institute.
    Geidenmark Olofsson, Kristin
    IVL Swedish Environmental Research Institute.
    Strömberg, Emma
    IVL Swedish Environmental Research Institute.
    Verifiering av sterilisering i processen för materialåtervinning av plast2024Report (Other academic)
    Abstract [sv]

    Den nationella plastkartläggningen  visade att år 2017 användes över 813 miljoner engångsprodukter av plast inom hälso- och sjukvården i Sverige. Den största delen av detta avfall hanteras genom förbränning, och för att minska den miljöpåverkan detta leder till har ett antal initiativ tagits för att inkludera materialet i slutna kretslopp, där plasten används i samma applikation på nytt och där materialets höga kvalité kan behållas.

    För att kunna göra det på ett säkert sätt krävs dock att materialet kan steriliseras för att vara säkert att hantera.  Detta projekt har haft som mål att ta fram en metod för att mäta den eventuella steriliseringsprocess som sker när plast återvinns i den så kallade regranuleringsprocessen. Denna process innebär att plasten mals ner och smälts vid omkring 200°C. Om denna process är effektiv för att sterilisera materialet behövs inget separat steriliseringssteg innan regranuleringen. Vi har i projektet tillsatt bakterien Bacillus atrophaeus, en organism som ofta används för verifiering av sterilisering, till regranuleringen av LDPE-plast.

    Vi har sedan utvärderat olika metoder för att extrahera DNA från det regranulerade materialet samt utvecklat en qPCR-metod för att kvantifiera antalet överlevande bakterier. På så sätt har vi försökt mäta den eventuella steriliseringen av det regranulerade plastmaterialet.Resultatet visar att det fortfarande finns svårigheter att frigöra DNA-molekylerna från plasten, och att detta steg även kan ha en negativ påverkan på DNA-kvalitén. qPCR-metoden kan detektera B. atrophaeus och visar i ett separat värmeexperiment på en förväntad steriliseringseffekt över tid.

    Denna effekt kunde dock inte reproduceras i de labbförsök som utfördes med extruder (en utrustning som används för att pressa smält plastgranulat till den profil som önskas). Ett antal möjliga förklaringar till detta, samt förslag till vidare forskning presenteras avslutningsvis i rapporten. Exempel på fortsatta forskningsfrågor som presenteras är; fördelning av bakterier i plastmassan, inneslutande av celler i plastmaterialet, steriliseringseffekt i extrudern samt metod för bestrykning av bioindikator.

    Download full text (pdf)
    fulltext
  • 9.
    Unsbo, Hanna
    et al.
    IVL Swedish Environmental Research Institute.
    Strömberg, Emma
    IVL Swedish Environmental Research Institute.
    Almasi, Alexandra Maria
    IVL Swedish Environmental Research Institute.
    Increasing the circularity of high barrier flexible plastic packaging - Results from WP1: Market analysis2023Report (Other academic)
    Abstract [en]

    Plastic packaging constitutes a large part of the total plastic use in Sweden. However, only a limited fraction of all packaging put on the Swedish market each year is recycled. One of the reasons for this is the complex design of many plastic packages, which contributes to challenges when sorting, disassembling, and recycling the collected material into high-value applications. Flexible plastic packaging, namely films, used for packaging groceries/food are especially challenging when it comes to mechanical recycling. This category includes countless multi-layered film structures which often include, for example, barriers and adhesives that may affect the sorting and recycling of the material. The aim of the first work package was to conduct an initial market analysis to map and quantify the current and future use of complex high barrier laminates, both multi-material structures and mono-materials structures, on the Swedish market. The market analysis was carried out by studying available literature, both scientific and grey literature, as well as through interviews with relevant stakeholders.

    Download full text (pdf)
    fulltext
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf