IVL Swedish Environmental Research Institute

ivl.se
Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Sofia Lovisa
    IVL Swedish Environmental Research Institute.
    Kväveåtervinning genom stripping och kristallisation2021Report (Other academic)
    Abstract [sv]

    Denna rapport sammanställer erfarenheter och resultat från pilotskaleförsök med stripping och kristallisation för kväveåtervinning från avloppsvatten. Projektet har varit ett samarbete mellan EkoBalans och IVL Svenska Miljöinstitutet, där EkoBalans anläggning eco:N testats under sommaren 2020 på IVLs test- och demonstrationsanläggning Hammarby Sjöstadsverk.

    Försöken har visat att det i anläggningen är möjligt att behandla ett rejektvatten från avvattning av rötat slam med ammoniumhalt från 500 till 2000 mg NH4-N/L med en ammoniumreduktion överstigande 95 % över själva strippern.

    Pilotförsöken har också visat att kristalliserad ammoniumsulfat kunde utvinnas, även om begränsningar i tillgänglighet till försöksanläggningen och substrat som gjorde att kontinuerlig drift inte var möjlig.

    Inom projektet har även många praktiska erfarenheter genererats vilket bidragit till fortsatt utveckling av anläggningen.

    Download full text (pdf)
    fulltext
  • 2.
    Andersson, Sofia Lovisa
    et al.
    Stockholm Vatten och Avfall.
    Andersson, Sofia
    Sweco.
    Baresel, Christian
    IVL Swedish Environmental Research Institute.
    MBR-tekniken  − utmaningar och möjligheter för svenska avloppsreningsverk: Praktiska erfarenheter och framtidsutsikter baserat på nio år avpilotverksamhetoch en fullskaleimplementering2023Report (Other academic)
    Abstract [en]

    During 2013–2022, the membrane bioreactor technology (MBR) has been evaluated through pilot tests at the Hammarby Sjöstadsverk research facility, in preparation for full-scale implementation at the Henriksdal wastewater treatment plant. This report summarizes specific experiences, challenges, and opportunities identified. The pilot consists of pre- and post-denitrification with the addition of an external carbon source for nitrogen removal. Phosphorus is removed through pre- and simultaneous precipitation at three dosing points. The pilot has generally achieved stable treatment efficiency, even under high load conditions, with effluent concentrations far below the discharge requirements. This even with less consumption of chemicals compared to design values. The report includes results from various control strategies and a comparison of  different external carbon sources. The membrane operation was generally stable, with permeability ranging from 600 to 200 lmh/bar. Optimization of resource consumption has been a focus in the pilot project since 2018. Attempts to reduce membrane fouling and the amount of chemicals used for membrane cleaning have been conducted, showing, for example, a reduction of membrane cleaning chemical requirements to 30–40% of the design. This finding has partially been confirmed in the full-scale line. Tests with reduced sludge  recirculation to decrease energy consumption indicated no negative effects on membrane performance. Tests with a flux enhancer showed no apparent positive or negative changes in membrane permeability. However, tests with an antifoaming agent were effective in reducing and controlling foaming. An assessment of micropollutants such as pharmaceutical residues, microplastics and PFAS, showed comparable levels between the MBR pilot and the conventional activated sludge process at Henriksdal WWTP. Emissions of chlorinated compounds were measured during several recovery cleanings with sodium hypochlorite, indicating potential harm throughout the cleaning process from an exposure perspective. Measurements of greenhouse gas emissions showed varied emissions between different measurements. In addition to these and other results and aspects, experiences from other MBR plants in Sweden and internationally are also presented.The MBR pilot was also used for several other activities outlined in the report, including: ● Testing and comparing different carbon sources for post-denitrification, including sodium acetate, Brenntaplus, methanol, acetic acid, glycerol, ethanol, and internally produced VFA (volatile fatty acids). ● Biological phosphorus removal, although the process was not specifically designed for this purpose. This resulted in significantly lower consumption of precipitation chemicals than expected. ● Tests with advanced treatment techniques such as ozonation, activated carbon, and others for the removal of micropollutants. Experiences from other Swedish and international MBR plants are also described. ● Use of the MBR pilot as part of a direct potable reuse (DPR) system, which involves treating the purified wastewater for direct use as drinking water. Finally, the report discusses various aspects including decommissioning and management of spent membranes, general operational experiences, pilot to full-scale feedback, and future potential and challenges for MBR technology.

    Download full text (pdf)
    fulltext
  • 3. Andersson, Sofia Lovisa
    et al.
    Andersson, Sofia
    Baresel, Christian
    IVL Swedish Environmental Research Institute.
    Eriksson, Mikael
    Fujikawa, Mayumi Narongin
    IVL Swedish Environmental Research Institute.
    Carranza Muno, Andrea
    IVL Swedish Environmental Research Institute.
    Yang, Jing-Jing
    IVL Swedish Environmental Research Institute.
    Bornold, Niclas
    IVL Swedish Environmental Research Institute.
    Karlsson, Jesper
    IVL Swedish Environmental Research Institute.
    Långtidsförsök med membranbioreaktor för förbättrad avloppsvattenrening i kombination med kompakt slambehandling2023Report (Other academic)
    Abstract [en]

    Henriksdal wastewater treatment plant (WWTP) in Stockholm is currently being extended and rebuilt for increased capacity (from 0.8 to 1.6 million PE) and enhanced treatment efficiency (6 mg TN/L, 0.20 mg TP/L, 5 mg BOD7/L).

    The reconstruction includes retrofitting of the existing conventional activated sludge (CAS) tanks with a new membrane bioreactor (MBR) process containing 1.6 million m2 of membrane area. It also includes extended pretreatment and a new treatment step for thickening of primary sludge. Digestion of thick sludge (~6 % TS) will be done at thermophilic conditions, unlike today’s mesophilic operation, with high organic load and relatively short retention time.

    To increase the knowledge of MBRs in Nordic conditions, Stockholm Vatten och Avfall (SVOA) and IVL Swedish Environmental Research Institute have conducted long-term MBR studies in pilot scale at the R&D-facility Hammarby Sjöstadsverk, located on the premises of the Henriksdal WWTP. The MBR-pilot was taken into operation in 2013 and was reconstructed to its current configuration in 2016. In 2017 the MBR pilot was supplemented with a sludge treatment line to study different aspects of sludge digestion. 

    During 2021, the MBR-pilot was operated at a fixed inflow of 4.1 m3/h, which is 37 % higher than the design average flow, with externally provided glycerol as well as internally produced VFA as carbon source for post-denitrification. Aluminum (PAX) was used instead of Ferric (PIX) as complement to Ferrous (FeSO4) for phosphorous precipitation. This was done to test the operational strategy for the first MBR line in Henriksdal WWTP. The average effluent concentration of nitrogen and phosphorus was 3.9 mg TN/L and 0.07 mg TP/L, respectively, which means that the effluent requirements were met also this year. To achieve this, 8.6 g Fe2+/m3 and 0.9 g Al3+/m3 was required.

    During flux enhancer trials a total of 17.8 g iron (Fe2+ + Fe3+)/m3 was added. The glycerol dose was equivalent to 17.3 g COD/m3 and for internally produced VFA the dose equivalent was 15.5 g COD/m3. The slightly higher consumption of phosphorus precipitation chemicals compared to 2020, 1.29 mole metal per mole of phosphorus removed, was mainly due to a lower enhanced biological phospho¬rus removal (EBPR) activity in 2021. In 2021 the phosphorous release rates were low during the spring and showed < 1 g PO4-P/kg VSS,h in June but recovered in the summer with 5.5 g PO4-P/kg VSS,h in July after the defoaming agent dosing was stopped.

    The iron and aluminum content in the activated sludge was 6.2 and 0.7 %, respectively. Average total sludge age during 2021 was 17.2 days and average aerated sludge age was 7 days. Nitrification was always complete with ammonia concentrations below 2 mg/L except week 25. Test with use of internally produced VFA as carbon source showed that the specific COD consumption was almost the same as for glycerol when comparing the yearly average from 2021 and 2020. Effluent nitrate and total nitrogen removal was similar during the trial with VFA as the rest of the year, when glycerol was used.

     Like previous years, the membranes in membrane tank 1 (MT1) was cleaned with oxalic acid and the membranes in MT2 with citric acid. Both membranes were also cleaned with sodium hypochlorite. The membranes were operated with an average net flux around 21 to 25 L/(m2·h) but starting from week 25, the flux was increased to 30 L/(m2·h) which is the design net max flux of the full scale MBR in Henriksdal and was tested in the pilot for 25 weeks.

    The net TMP varied between 49 and 218 mbar for MT1 and between 51 and 146 mbar for MT2. TMP was reduced after each recovery cleaning (RC) with hypochlorite, but the effect did not last long. The permeability was generally above 200 L/(m2·h·bar) throughout 2021-2022 for both membranes. Recovery cleanings were done twice with hypochlorite and once with acids during 2021. During 2022 a final RC, first with hypochlorite then with acids was carried out.

    The first RC for MT1 resulted in a clear increase in permeability after cleaning. For MT2 the major increase in permeability was the result of a citric acid MC (one week after the hypochlorite RC). The RCs at the end of 2021 and in March 2022 had clear but smaller positive impact on permeability. Prior to the first RCs, permeability was higher for MT1 (cleaned with oxalic acid) compared to MT2 (cleaned with citric acid). After the first RCs, both membranes had similar permeability. As a result of the tough operational strategy from week 25 2021, permeability decreased quite quickly after RCs. MT2 reached a stable level around 250-300 L/(m2·h·bar) while MT1 decreased even more, to as low as around 200 L/(m2·h·bar). 

    Emission of chlorinated compounds in the off-gas ventilation were measured during the final sodium hypochlorite recovery cleaning. The emission process was slower than expected and generally no clear sign of attenuation of emissions was observed during the 21 hours of sampling. Although composite samples of several hours during the night are not providing enough details, it was concluded that the emissions can be harmful during the entire RC process from an exposure perspective. Trichloramine peaked at 36 times the recommended limit, chlorine gas at 73 % of the short-term exposure limit (15 min exposure), and chloroform at 9 % of the occupational exposure limit (8-hour workday average).To follow up previous measurements of greenhouse gases nitrous oxide (N2O) and methane (CH4), a new campaign was performed during several months in 2021. Generally, emissions observed in 2021 were significantly higher than in previous campaigns in the pilot and especially high N2O-emissions from the membrane-tank could be identified.

    No clear reason could be identified but the increased incoming load with a maintained effluent quality and a “better” sampling setup may partly be an explanation.In collaboration with Kemira, tests with a flux enhancer product were performed in 2021. However, no obvious positive or negative change in permeability due to dosing of flux enhancer was possible to identify based on continuously monitored process parameters and commonly observed variations in permeability and effect of membrane cleaning.  As the formation of foam is a common phenomenon in MBR plants, tests with an antifoaming agent were done by dosing in batches and continuously to the biological treatment during the period of heavy foaming (March-June).

    Even if foaming was not avoided, a good reduction and control of foaming could be achieved. An optimal effect was achieved with continuous dosages of > 10 ppm. However, even though the product has shown to have a positive effect in the MBR-pilot, a permanent use in full-scale may not be economically feasible due to the high consumption.Test with a reduced RAS flow from the design value of 4×Qin to 2×Qin was done with the aim to reduce energy consumption for pumping. A reduced RAS flow would however imply an increased sludge concentration in the membrane tanks, which may have negative effects on the membrane performance with more clogging and consequently increased aeration for membrane scouring and need for more frequent membrane cleaning.

    However, no negative effects of the reduced RAS-flow could be seen on the membrane performance.    During 2021, tests with a transition from mesophilic to thermophilic anaerobic digestion, dewatering of digested sludge after mesophilic and thermophilic digestion, and thermophilic digestion at high organic loading rate (OLR) and low hydraulic retention time (HRT) were performed in the sludge pilot. Results show that the transition from mesophilic to thermophilic digestion can be done without any major problems if the load was reduced during the most critical temperatures and that stable operation was achieved after 10-12 days. Evaluating the dewatering of mesophilically and thermophilically digested sludge was more difficult and no clear differences could be observed. However, it was concluded that used methods for determining dewaterability or optimal polymer dose are not reliable.

    Trials with high organic loading rate at thermophilic digestion showed that the digester performance could be maintained up to an OLR of around 4 kg VS/m3, d and an HRT of 12 d. When the load is further increased and HRT decreased, the performance in terms of VS reduction and biogas-/methane production decreased although the reactor operation was still stable.   The overall resource consumption in the pilot showed that the consumption of glycerol was the same as for the future Henriksdal design, even though the nitrogen load in the pilot was 21 % higher and the average effluent total nitrogen concentration was 3.9 mg TN/L compared to the design of 6 mg TN/L.

    Also, the iron/metal consumption was 73 % of the future Henriksdal design, although the phosphorus load to the pilot was about 50 % higher compared to design values and effluent phosphate concentrations were below the target concentration. This is mainly explained by the EBPR activity in the pilot. Also, the consumption of cleaning chemicals was lower than the future Henriksdal design although the inflow to the pilot was 30 % higher than design.

    Download full text (pdf)
    pH2040 årsrapport 2021 2022
  • 4.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Bornold, Niclas
    IVL Swedish Environmental Research Institute.
    Lundwall, Ted
    IVL Swedish Environmental Research Institute.
    Björk, Anders
    IVL Swedish Environmental Research Institute.
    Borzooei, Sina
    IVL Swedish Environmental Research Institute.
    Tuvesson, Malin
    MSVA.
    Kanders, Linda
    IVL Swedish Environmental Research Institute.
    Ny teknik för mätning av växthusgaser vid avloppsreningsverk: Vid behandling av kallt avloppsvatten och vid avsaknad av kväverening2024Report (Other academic)
    Abstract [sv]

    Utsläpp av lustgas (N2O) utgör en betydande andel av klimatpåverkan från avloppsreningsverk (ARV). Medan de genomsnittliga utsläppen av lustgas från avloppsreningsverk med kväverening bedöms generellt ligga på ca 1,6 % av inkommande kväve förväntas inga lustgasemissioner i avloppsreningsverk utan kväverenande aktivitet. Detta eftersom lustgas bildas via processer som alla ingår i den biologiska kväveavskiljningen i avloppsvattenreningen. Dock kan det förekomma spontan och okontrollerad nitrifikation som kan leda till mycket höga lustgasutsläpp. Relativt ringa lustgasemissioner kan vara betydande för avloppsreningsverkens klimatavtryck eftersom lustgas är en mycket kraftig växthusgas, ca 273 gånger kraftigare än koldioxid. 

    Trots den ökande kunskapen om lustgasutsläppens betydelse i avloppsreningsverkens klimatarbete utförs det fortfarande relativt få mätningar av lustgasutsläpp vid svenska ARV. Detta gör att det finns flera kunskapsluckor om och förståelse för lustgasutsläpp för att aktivt kunna vidta åtgärder för att minska dessa utsläpp. En anledning till att få mätningar genomförs är att det i dag inte finns krav på sådana mätningar och inte heller enkla metoder för lustgasmätning tillgängliga för VA-aktörer. 

    Projektet har därför syftat till att öka kunskapen om lustgasutsläpp från avloppsrening i kallt klimat, med eller utan kontrollerad nitrifikation. Kallt klimat refererar till avloppsvatten som har minimitemperaturer ner till 4–5 grader. I samarbete med teknikleverantörer har dessutom nya lustgassensorer, anpassat för mätningar vid avloppsreningsverk, testats. För att kunna genomföra projektet med tilldelade medel och för att åstadkomma synergieffekter kopplades projektet till ett pågående pilotprojekt för kväverening i kall klimat vid Fillan avloppsreningsverk i Sundsvall, som även SVU medverkar i. 

    Lustgasmätningar vid Fillan ARV som representerar en biologisk reningsprocess i kallt klimat utan kväverening är som förväntat låga. De uppmätta emissionerna uppgick till ca 0,17 % N2O-N/TN trots att en spontan och okontrollerad nitrifikation inte kunde observeras. Även om lustgasemissioner är låga så visar emissionsberäkningar att lustgasavgången ändå inte är försumbar och utgör ett avsevärt bidrag till klimatpåverkan.  

    Lustgasmätningar i pilotanläggningen som representerar biologiska reningsprocesser med kväverening i kallt klimat indikerar att emissionerna kan antas vara i samma storleksordning eller högre som vid avloppsreningsverk med kväverening som inte har ett kallt inkommande avloppsvatten som regel. Ingen signifikant skillnad i lustgasemissioner kunde observeras mellan pilotens två linjer, varav den ena linjen värmdes med +4 °C mot referenslinjen. 

    Utvärdering av de två nya sensorer från Unisense och Senseair har visat en mycket bra överensstämmelse mellan kalibrerade sensordata och referensmätningarna. Båda sensorer har därför en potential att användas för en kontinuerlig mätning av lustgas i gasfas ifall en kommersiell produktutveckling sker. Resultaten från kalibreringen indikerar dock vikten av en regelbunden kalibrering av sensorerna för att säkerställa korrekta mätningar, så som för sensorer i allmänhet. Kalibreringsmetoden som tillämpades inom projektet bedöms som rimlig men är inte den mest robusta eller noggranna metoden för en fullskaleimplementering.

    Även utifrån andra implementeringsaspekter framstår de två testade sensorerna som ett tänkbart alternativ till andra mättekniker. Dock är dessa sensorer ännu inte kommersiellt tillgängliga och kompletterande långtidstester av sensorerna bör genomföras för en utvärdering som även kan ta hänsyn till aspekter relaterat till mätstabilitet och underhållsbehov vid långtidsdrift. 

    En annan aspekt som projektet vill lyfta fram är vikten av att korrekta luftflödesmätningar utförs samtidigt som haltmätningarna. Endast en bra haltmätning i kombination med en korrekt luftflödesmätning vid mätpunkten kan ge ett korrekt underlag för emissionsberäkningar. Tyvärr kan det konstateras att enkla, robusta och ekonomiskt överkomliga sensorer för kontinuerlig luftflödesmätning inte finns idag och att det krävs en teknikutveckling även inom detta område.

    Download full text (pdf)
    fulltext
  • 5.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Bornold, Niclas
    IVL Swedish Environmental Research Institute.
    Malovanyy, Andriy
    IVL Swedish Environmental Research Institute.
    Axegård, Peter
    Lazic, Aleksandra
    Yang, Jing-Jing
    IVL Swedish Environmental Research Institute.
    Framtidens slamhantering vid Roslagsvatten: Behandling av kommunalt orötat slam med HTC-teknik (OxyPower HTC™) och rening av HTC-vatten med SBR och MBBR2023Report (Other academic)
    Abstract [en]

    Hydrothermal carbonization (HTC) of municipal sewage sludge has the potential to become one of the techniques for future sludge management at Swedish municipal wastewater treatment plants (WWTPs).

    Some expected benefits of the HTC technology are a more sustainable sludge management and return of nutrients via the produced hydrochar, as well as other positive effects such as less greenhouse gas emissions and nutrient leakage into the environment.

    At the same time, certain challenges such as the handling of process water and uncertainties about the properties of the produced hydrochar need to be investigated. In order to answer these questions and gather practical experience for HTC as a sludge management alternative, pilot trials with C-Green's OxyPower HTC™ have been carried out at Roslagsvattens WWTP in Margretelund, Åkersberga, Sweden.

    Undigested sludge was treated to produce hydrochar and the produced HTC water was used at KTH/IVL's pilot plant Hammarby Sjöstadsverk in various side- or mainstream bench- and pilot-scale tests for biological treatment.Hydrochar and sludge from Roslagsvattens WWTP in Margretelund were characterized and tested in growth trials with soil and peat.

    The formation of carbon dioxide in soil was also evaluated. In these studies, the results were also compared with hydrochar from four other substrates (digested food waste, stable manure, biosludge from treatment of process water from a pulp/paper mill and digested mixed sludge from municipal WWTPs).The project has shown that C-Green's OxyPower HTC™ is a possible technical alternative for treating Margretelund’s undigested sewage sludge. Various tests have illustrated that the technol¬ogy can reduce the sludge volume through an increase in TS to about 65 %, not only for sewage sludge but also for several other investigated substrates.

    Although the HTC pilot plant could not be run continuously as a full-scale plant, still a process stability could be demonstrated. Even though the process is basically exothermic and a net production of energy over the entire process can be observed, the process needs high-quality electrical energy for operation.

    An efficient utilization of the surplus heat that is produced thus becomes an important aspect to achieve resource efficiency. C-Green's OxyPower HTC™ is a compact process with relatively little surface area and costs for the process are judged to be dominated by operating costs in the form of energy and operating personnel.Tests with biological treatment of HTC water showed that a mixture with only reject water from sludge dewatering is not sufficient to achieve an effective purification to avoid an increased internal load on the mainstream process.

    Although an effective reduction of organic pollutants measured as COD could be achieved, both short-term bench-scale and long-term pilot-scale tests indicated a clear inhibition of nitrification. While no complete inhibition was observed, long-term tests clearly showed that an adaptation of the microbial community over time cannot be expected. At the same time, supplementary long-term pilot tests with biological treatment of both HTC-water and reject water in the mainstream process showed an effective reduction of both organic pollutants such as COD and ammonium. No inhibitory effects were indicated, which is due to the very strong dilution of any inhibitory substances in the HTC water.

    A return to the main treatment, however, means a greatly increased internal load, mainly with respect to organic pollutants and ammonium, which require extra process volumes if the effluent levels are not to be compromised.The HTC technology thus constitutes an interesting alternative for sludge management at Swedish WWTPs, which, however, requires consideration of several aspects: the facility's fitness to handle an increased internal load, today's sludge quality for producing good quality hydrochar, and a good integration into existing processes for optimal resource utilization.

    Download full text (pdf)
    Framtidens slamhantering vid Roslagsvatten
  • 6.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Bornold, Niclas
    IVL Swedish Environmental Research Institute.
    Rahmberg, Magnus
    IVL Swedish Environmental Research Institute.
    Malovanyy, Andriy
    IVL Swedish Environmental Research Institute.
    Lindblom, Erik
    IVL Swedish Environmental Research Institute.
    Carranza Munoz, Andrea
    IVL Swedish Environmental Research Institute.
    Resultat från FoU-samarbete Syvab-IVL2023Report (Other academic)
    Abstract [sv]

    Dagens reningsverk står inför flera utmaningar såsom ökad belastning, skärpta reningskrav, ett förändrat klimat, krav på ökad resurseffektivitet, en mer hållbar slamhantering och minskad miljöpåverkan från verksamheten.

    I en strävan att nå mer hållbara lösningar för avloppsvattenrening och slamhantering har IVL Svenska Miljöinstitutet och Syvab haft ett långsiktigt forskningssamarbete. Under 2022 har olika aktiviteter inom områdena resursförbrukning, miljöpåverkan, slamhantering och processoptimering genomförts. Några av de aktiviteter som redovisas i denna rapport är fortfarande under genomförande och fortsätter även under 2023.  Några resultat från 2022 års arbete är följande:

    Långtidspilottester med teknikkombinationen av Syvabs framtida MBR-process och två parallella 2-stegs filter med granulerat aktivt kol (GAK) för rening av läkemedelsrester och PFAS visar en fortsatt bra reningseffektivitet även om en förväntat avtagande effekt med ökade antal behandlade bäddvolymer observerats. tt kolbyte har fortfarande inte behövts efter ca 2,5 år av drift (vid ca 70 000 behandlade bäddvolymer i de enstaka GAK-filtren). Jämfört med det befintliga principförslaget så visar pilottesterna att signifikanta resurs- och kostnadsbesparingar kan åstadkommas om resultaten från pilotförsöken läggs till grund för en framtida fullskaleimplementering.Utvärderingen av övervaknings- och styrningsmöjligheter av GAK-filtren med hjälp av UVA eller DOC indikerar att en övervakning av reningen baserat på endast dessa parameter inte kommer räcka till.

    Pilottester med en kombination av pulveriserat aktivt kol (PAK) och MBR-processen visar en mycket effektiv borttagning av studerade läkemedelsrester med >80 % redan vid en PAK-dos på ca 15 mg/l. Även PFOS renas bort effektivt med en avskiljning >98 %. Jämfört med teknikkombinationen MBR-GAK kan PAK-MBR alternativet ge ytterligare resursbesparingar samtidigt som andra utmaningar som slampåverkan p.g.a. PAK-tillsats behöver beaktas.

    En implementering av SIMBA#-processmodellen för MBR-piloten och utvärdering av återkommande nitrifikationshämningar i fullskaleanläggningen med hjälp av dataanalys visar potential för dessa verktyg som möjlig användning i framtiden.

    Download full text (pdf)
    Resultat från FoU-samarbete Syvab-IVL
  • 7.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Habagil, Moshe
    VIVAB.
    Malovanyy, Andriy
    IVL Swedish Environmental Research Institute.
    Hedman, Fredrik
    IVL Swedish Environmental Research Institute.
    Schleich, Caroline
    VIVAB.
    Förstudie - Mikroföroreningar vid Getteröverket i Varberg: Tekniska lösningar för en utökad rening av avloppsvatten2024Report (Other academic)
    Abstract [sv]

    Mellan 2020 och 2023 har Vivab i samarbete med IVL Svenska Miljöinstitutet genomfört en förstudie om avancerad rening vid Getteröverket i Varberg. Förstudien genomfördes med bidrag från Naturvårdsverket i två olika etapper. Den första etappen omfattade en påverkansanalys av vattenmiljön, en behovsutredning och initiering av pilottester medan den andra etappen handlade främst om en fortsättning och komplettering av pilottester samt framtagandet av beslutsunderlag. Denna rapport redovisar etapp nummer två och kompletterar redan utfört arbete från etapp ett. Den första rapporten som avser etapp ett skickades till Naturvårdsverket i slutet av 2021.

    Syftet med den förstudien var att utreda förutsättningarna för en fullskaleinstallation av lämplig teknik för rening av organiska mikroföroreningar såsom läkemedelsrester vid Getteröverket. Målet med studien var att ge ett väl underbyggt underlag för aktuella beslutsfattare för en eventuell implementering av en fullskaleanläggning inom befintligt verksamhetsområde.

    För att uppnå ovan nämnda mål genomfördes kompletterande screeningar av organiska mikroföroreningar i föreliggande rapport. Provtagning har genomförts över avloppsreningsverket, potentiella punktkällor uppströms och i mottagande ytvatten som utgör Getteröverkets recipient. De tidigare startade långtidsförsöken från etapp 1 fortsatte under etapp 2. Försöken har utvärderat teknikkombinationen ultrafiltrering och granulerat aktiv kol (UF-GAK) och inkluderade även kompletterande pilottester med teknikkombinationen ozonering efterföljt av GAK (O3-GAK).Resultaten för den genomförda och kompletterande kartläggningen av i) mikroföroreningar över Getteröverket, ii) bidragande källor till inkommande avloppsvatten och iii) olika recipientpunkter, visade tydligt att Getteröverket är den dominerande transportvägen för läkemedelsrester till mottagande recipient inklusive Inre Farehammarsviken, som är ett känsligt och skyddat naturområde. För andra mikroföroreningar såsom PFAS (per- och polyfluorerade alkylsubstanser) och fenoler, finns även andra källor än Getteröverket. Vid undersökningar av lakvattnet från Bösarp deponi, konstaterades att det endast bidrar med en mindre del av den totala PFAS-belastningen till Getteröverket.De genomförda pilottesterna med de olika teknikkombinationerna UF-GAK och O3-GAK visade att en mycket bra reduktion av läkemedelsrester och andra organiska mikroföroreningar kunde åstadkommas.

    Långtidsförsöken som pågick i ca 30 månader visade också att reduktionen kan åstadkommas med en signifikant mindre kolförbrukning i UF-GAK-lösningen jämfört med en traditionell design av kolfilter. Principförslaget som inkluderar dimensionering och tekniskt utförande för UF-GAK visar hur en fullskaleimplementering kan utföras. Projektgruppen valde att fokusera på teknikkombinationen UF-GAK i principförslaget, eftersom denna tekniklösning utvärderades under en längre tid och utifrån flera aspekter. En annan anledning till ett ökat fokus för kombinationen UF-GAK, var att den även ger ökade möjligheter för en återanvändning av vatten. För alternativet med O3-GAK gjordes endast en förenklad bedömning av resursbehovet. Utifrån den genomförda kostnadsbedömningen skulle en implementering av avancerad rening med UF-GAK vid Getteröverket generera en specifik reningskostnad på ca 2,3 kr/m3.Utöver analyser av olika organiska mikroföroreningar för pilotprocesserna genomfördes det även ett antal olika aktiviteter såsom aktivitetstester av vattenprover över olika reningssteg, flödescytometri, karakterisering av den mikrobiella sammansättningen i GAK-filter, antibiotikaresistens med mera, vilket återfinns i rapporten.

    Download full text (pdf)
    fulltext
  • 8.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Karlsson, Linus
    IVL Swedish Environmental Research Institute.
    Malovanyy, Andriy
    IVL Swedish Environmental Research Institute.
    Thorsén, Gunnar
    IVL Swedish Environmental Research Institute.
    Goicoechea Feldtmann, Melissa
    FIHM.
    Holmquist, Hanna
    IVL Swedish Environmental Research Institute.
    Pütz, Kerstin
    IVL Swedish Environmental Research Institute.
    Dalahmeh, Sahar
    Uppsala University.
    Ahrens, Lutz
    SLU.
    PFAS – how can Swedish wastewater treatment plants meet the challenge? Compilation of knowledge and guidance for water/wastewater actors regarding PFAS2023Report (Other academic)
    Abstract [en]

    Per- and Polyfluoroalkyl Substances (PFAS) are everywhere around us in society, found in commercial and industrial products, the atmosphere, waste, water (waste, surface, drinking, and ground), soil, plants, animals, and even in our bodies. The use and spread of PFAS is a global societal challenge, affecting even the most remote places on Earth. One of the reasons why PFAS has been an attractive component in many products and industrial applications is their extreme chemical and thermal stability. However, these same properties allow for the persistence of PFAS in the environment, whereby even low PFAS emissions over time can be accumulated and pose a high risk of negative health and environmental effects. Today there are thousands of known and unknown PFAS with widely varying properties and toxicity, which makes both risk assessments and management of this growing environmental problem difficult. According to a national mass balance for PFAS emissions from products and atmospheric deposition are the major sources of PFAS in Sweden.

    The amount of PFAS which are environmentally dispersed via wastewater and sewage sludge can be considered a minor part. However, due to the persistence of PFAS, measures to minimize their addition via these pathways may be necessary to reduce the total environmental load. Due to their toxicity and persistence, PFAS have recently become heavily regulated, with many regulatory agencies lowering the accepted PFAS environmental level ranges. Many PFAS have already been banned in Sweden or the EU and assessment grounds or action limits have been defined for various PFAS (e.g., surface water bodies, groundwater and drinking water) to initiate measures to reduce the spread of the substances. Already announced and stricter regulations will further increase the need for measures to minimize human exposure to PFAS and their dispersal in the environment.

    Regardless of which measures are implemented, PFAS will remain in the environment for a long time, even if a global ban of the chemicals is implemented. Long-term management of PFAS is thus necessary to removal from the cycle gradually. The focus of mitigation actions should primarily be on heavily contaminated land and landfill leachate. The review of existing data from Swedish wastewater treatment plants WWTP and receiving recipients shows that today’s treatment processes do not remove PFAS. At some WWTP, however, an effective separation of certain PFAS is observed, which should be investigated further. Perfluorooctanoic sulfonic acid (PFOS) levels in many of the investigated inland surface waters receiving effluent from treatment plants and PFAS from other sources/pathways exceed existing limits. In many cases, however, analysis limitations prevent an assessment.

    Ongoing activities around various treatment and destruction techniques for PFAS show that there are currently no techniques that achieve a far-reaching PFAS removal from municipal wastewater without significant resource consumption and related costs. For the continued use of sludge as a fertilizer, upstream mitigation is needed, with e.g., disconnection or treatment of PFAS-contaminated leachate. However, several ongoing projects indicate that a certain part of PFAS in wastewater can be removed as a side-effect of advanced treatment for pharmaceutical removal. This report provides guidance to stakeholders on how the PFAS problem can be tackled. It also demonstrates the need to improve and spread PFAS knowledge, particularly those involved with PFAS measurement data, treatment techniques and PFAS in sludge. 

    Download full text (pdf)
    fulltext
  • 9.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Karlsson, Linus
    IVL Swedish Environmental Research Institute.
    Malovanyy, Andriy
    IVL Swedish Environmental Research Institute.
    Thorsén, Gunnar
    IVL Swedish Environmental Research Institute.
    Goicoechea Feldtmann, Melissa
    IVL Swedish Environmental Research Institute.
    Holmqvist, Hanna
    IVL Swedish Environmental Research Institute.
    Winkens Pütz, Kerstin
    IVL Swedish Environmental Research Institute.
    Dalahmeh, Salar
    Uppsala Universitet.
    Ahrens, Lutz
    SLU.
    PFAS – Hur kan svenska avloppsreningsverk möta denna utmaning?: Kunskapssammanställning och vägledning för VA-aktörer kring PFAS2022Report (Other academic)
    Abstract [en]

    PFAS (Per- and Polyfluoroalkyl Substances) are everywhere around us in society; in products, the atmosphere, waste, wastewater, surface water, drinking water, groundwater, soil, plants, animals and in our bodies. The use and spread of PFAS is a global societal challenge and even the most remote places on earth are no longer unaffected by PFAS substances. One of the reasons why PFAS has been attractive in many products and industrial applications is the substances' extreme chemical and thermal stability. However, the same properties create challenges in the environment as the persistence of PFAS implies that even low emissions over time can be accumulated in different environments with a high risk of negative health and environmental effects. Today there are thousands of known and unknown PFAS with widely varying properties and toxicity, which makes both risk assessments and management of this growing environmental problem difficult.

    A national mass balance for PFAS shows that emissions from products and atmospheric deposition are the major sources of PFAS to Sweden. The PFAS-amounts that are spread to the environment via wastewater and sewage sludge can be considered a minor part. However, due to the persistence of PFAS substances, measures to minimize the addition via these pathways may be relevant in order to reduce the total environmental load.

    Considering the toxicity and persistence of PFAS, their use has been heavily regulated in recent times and the levels that are considered acceptable in the environment have been lowered. Many PFAS have already been banned in Sweden or the EU and assessment grounds or action limits have been defined for various PFAS in e.g. surface water bodies, groundwater and drinking water to initiate measures to reduce the spread of the substances. Already announced and upcoming stricter regulations will further increase the need for measures to minimize human exposure to PFAS and their dispersal in the environment. Regardless of which measures that are implemented, PFAS will remain in the environment for a long time, even if a global ban of the chemicals is implemented. A long-term management of PFAS is thus necessary with a gradual removal from the cycle. The focus of mitigation actions should primarily be on heavily contaminated land and landfill leachate.The review of existing data at Swedish sewage treatment plants and receiving recipients shows that today's treatment processes do not remove PFAS even of some PFAS are removed and end up in the sludge. At some sewage treatment plants, however, an effective separation of certain PFAS is observed, which should be investigated further. PFOS levels in many of the investigated inland surface waters receiving effluent from treatment plants and PFAS from other sources/pathways exceed existing limits. In many cases, however, analysis limitations prevent an assessment.

    Ongoing activities around various treatment and destruction techniques for PFAS show that there are currently no techniques that achieve a far-reaching PFAS removal from municipal wastewater without significant resource consumption and related costs. For a continued use of sludge as a fertilizer, upstream mitigation is needed, with e.g. disconnection or treatment of PFAS-contaminated leachate. However, several ongoing projects indicate that a certain part of PFAS in wastewater can be removed as a side-effect of advanced treatment for pharmaceutical removal.The report also provides guidance to stakeholders on how the PFAS problem can be tackled. In addition, the report shows a great need to improve and spread knowledge about PFAS with, above all, measurement data and knowledge about treatment techniques and PFAS in sludge in order to be able to meet the PFAS challenge.

    Download full text (pdf)
    PFAS – hur kan svenska avloppsreningsverk möta utmaningen
  • 10.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Narongin-Fujikawa, Mayumi
    IVL Swedish Environmental Research Institute.
    Lundwall, Ted
    IVL Swedish Environmental Research Institute.
    Karlsson, Jesper
    IVL Swedish Environmental Research Institute.
    Björk, Anders
    IVL Swedish Environmental Research Institute.
    Bornold, Niclas
    IVL Swedish Environmental Research Institute.
    Söhr, Sara
    Syvab.
    Pulveriserat aktivt kol i kombination med MembranBioReaktor (PAK-MBR): Etablering och tester med en pilotanläggning vid Hammarby Sjöstadsverk2022Report (Other academic)
    Abstract [sv]

    Under 2020 - 2022 har Syvab med hjälp av medel från Naturvårdsverket och i samverkan med IVL Svenska Miljöinstitutet genomfört en utvärdering av teknikkombinationen pulveriserat aktivt kol med MembranBioReaktor, d.v.s. PAK-MBR avseende för rening av mikroföroreningar. IVL har bidragit med att etablera och drifta pilotanläggningen. Teknikkombinationen har tidigare diskuterats som en potentiell avancerad reningsteknik, framförallt för rening av läkemedelsrester från avloppsvatten, men brist på kunskap och erfarenheter om tekniken har varit ett hinder för att betrakta tekniken som ett tänkbart alternativ vid svenska avloppsreningsverk (ARV).

    Etableringen av PAK-MBR-pilotanläggningen vid Hammarby Sjöstadsverk kunde avslutas under 2021, trots stora utmaningar med bl.a. förseningar orsakat av coronapandemin. Pilotanläggningen bestod av två identiska MBR-pilotlinjer. För en pilotlinje doserades det även in PAK. PAK-dosering till membrantanken gjordes med fyra olika PAK-doser (5-25 mg/L) inklusive en kontroll, och utvärderades för avskiljning av primärt olika organiska mikroföroreningar där bl.a. högfluorerade ämnen (PFAS) också ingick. Utöver de utvalda organiska mikroföroreningarna undersöktes även reningsgrad för hormonstörande effekter, bakterier och antibiotikaresistenta bakterier. Försöken med MBR och MBR-PAK hade två syften: dels att på ett generellt plan undersöka hur väl organiska mikroföroreningar avskiljs av teknikkombinationen PAK-MBR, dels att undersöka vid vilken PAK-dos som ledde till högst reningsgrad av de utvalda mikroföroreningarna.

    Resultaten visade att en mycket effektiv borttagning av de studerade läkemedelsrester erhölls med >80 % redan vid en PAK-dos på ca 15 mg/L. Även hormonstörande effekter avlägsnades markant vid 2 av 3 undersökta PAK-doser och i det tredje fallet var en lägre reningsgrad sannolikt förknippat med högre inkommande halter av östradiol till PAK-MBR-processen. PFOS (perfluorooktansyra, ett högfluorerat ämne), kunde renas bort mycket effektivt med en avskiljning >98 % med hjälp av teknikkombinationen PAK-MBR. För den andra pilotlinjen, där PAK inte doserades till membrantanken (referenslinjen), avskildes PFOS också mycket effektivt (>90 %). Någon avskiljning av andra högfluorerade ämnen (PFAS), som för denna rapport utvärderas med summaparametern PFAS11, var inte lika tydlig för någon av pilotlinjerna. Däremot visade pilotlinjen PAK-MBR en något bättre reningseffekt jämfört med referenslinjen utan PAK-tillsats.    

    För bedömning av miljöpåverkan och kostnader jämfördes framför allt PAK-MBR med en annan teknikkombination bestående av MBR-GAK. Den senare teknikkombinationen testas för närvarande i pilotskala av Syvab och IVL och under 2019 tog Ramboll fram ett principförslag av denna teknikkombination. I jämförelsen bedömdes det att resursförbrukningen och kostnaderna var avsevärt mindre för PAK-MBR jämfört med MBR-GAK, vilket bl.a. kan förklaras med att inga extra processvolymer behövs och att endast en PAK-lagring och -dosering krävs för PAK-MBR processen. Från pilottesterna framgick det dessutom att en mindre, eller en nästan jämförbar mängd aktivt kol som i MBR-GAK-alternativet behövdes. I jämförelse med andra tekniker, möjliggör PAK-MBR en belastningsstyrd (flödesstyrd) resursförbrukning. Detta kan innebära en framtida användning av biobaserat aktivt kol där exempelvis biokol kan tillverkas från avloppsslam och andra substrat. PAK ger också en positiv effekt på slamavvattningen och på rötningen, vilket kan ge ytterligare resursbesparingar.

    Sammanfattningsvis framstår teknikkombinationen PAK-MBR som den mest resurseffektiva avancerade reningsteknik för de reningsverk som redan har en befintlig MBR-process. Förutom att investeringskostnader kan hållas på en låg nivå, uppnår teknikkombinationen med PAK-MBR en mycket bred reningseffekt för många olika typer av mikroföroreningar. Med bred reningseffekt menas samtliga studerade parametrar, dvs. att en effektiv och delvis komplett rening av hormonstörande effekter, mikroplaster, PFOS, bakterier och antibiotikaresistenta bakterier också erhölls. Utöver dessa nämnda parametrar visade MBR-tekniken också att den kunde åstadkomma den mest effektiva reningen av vanliga föroreningar såsom närsalter, partiklar och biologiskt nedbrytbart material.

    Potentiella nackdelar med tekniken såsom överföring av mikroföroreningar till slamfasen behöver inte nödvändigtvis utgöra ett hinder för en framtida teknikimplementering. Istället, och för en möjlig reduktion av organiska mikroföroreningar, kan en ökad ackumulering av många organiska mikroföroreningar i slammet fasa ut återrecirkuleringen av dessa föroreningar till samhället och miljön. Framgent rekommenderas fler kompletterande tester med PAK-MBR-tekniken för att utforska potentialen av tekniken, hur den bäst styrs och övervakas och för att identifiera möjliga synergier med MBR-processen. Vi vill också betona att kompletterande tester även kan leda till upptäckten av andra eventuella bieffekter som ännu inte har identifierats.

    Download full text (pdf)
    fulltext
  • 11.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Olshammar, Mikael
    IVL Swedish Environmental Research Institute.
    On the Importance of Sanitary Sewer Overflow on the Total Discharge of Microplastics from Sewage Water2019In: Journal of Environmental Protection, ISSN 2152-2197, E-ISSN 2152-2219, Vol. 10, p. 1105–1118-Article in journal (Refereed)
    Abstract [en]

    The paper provides an investigation and understanding of the significance of various wastewater flows on microplastics retainment and emission to the environment. WWTPs and sewer overflows as an important pathway of microplastics to the environment are assessed by considering the removal of microplastics in WWTPs with different treatment processes and several sewer overflow types and their contribution to microplastic loads to recipients. On the example of the Baltic Sea basin, presented results indicate a considerable discharge of microplastic from WWTPs despite the relatively good overall removal efficiency. Results show that the discharge of microplastics from sewer overflows can be in the same magnitude as from treated wastewater although the total flow is much lower than that of treated wastewater. Sewer overflow events frequently occur and are expected to increase due to climate change and urbanization, unless infrastructure is adapted. At the same time, sewer overflows are often neglected in conventional wastewater handling.

    Download full text (pdf)
    fulltext
  • 12.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Önnby, Linda
    IVL Swedish Environmental Research Institute.
    Pütz, Kerstin
    IVL Swedish Environmental Research Institute.
    Karlsson, Linus
    IVL Swedish Environmental Research Institute.
    Esfahani, Bahare
    IVL Swedish Environmental Research Institute.
    Thorsén, Gunnar
    IVL Swedish Environmental Research Institute.
    Tuvesson, Malin
    MSVA .
    Rening av hormoner vid avloppsreningsverk i kalla klimat: En kunskapssammanställning och lärdomar från pilottester vid Fillan ARV i Sundsvall2023Report (Other academic)
    Abstract [sv]

    Vid tre av de största avloppsreningsverken i Sundsvall kommun har IVL genomfört en förstudie med syftet att utreda förutsättningar för en fullskaleinstallation för rening av läkemedelsrester från avloppsvatten. Förstudien visade att det framför allt var hormoner som utgjorde den största risken för negativ påverkan på vattenförekomsten. Eftersom Sundsvall kommun har planer för en framtida utbyggnad med kväverening vid Fillan ARV, föddes en tanke om huruvida en sådan utbyggnad även skulle kunna bidra till att hormonhalterna i utgående avloppsvatten minskar till icke-detekterbara nivåer.

    Detta mot bakgrund av att minskade hormonhalter observerats vid avloppsreningsverk med kväverening i södra Sverige. Om motsvarande minskning av utgående hormonhalter skulle observeras vid en utbyggd kväverening i Sundsvall kommun, skulle detta leda till att de observerade miljöriskerna i recipienten eliminerades.Med ekonomiskt stöd från Naturvårdsverket, och med hjälp av en befintlig pilotanläggning för studier av kväverening i kalla klimat via rörliga biofilmsreaktorer med bärare (MBBR), genomfördes under åren 2021 och 2023 en kompletterande förstudie vars resultat presenteras i denna rapport. Projektet har fokuserat på rening av hormoner och hormonstörande effekter vid implementering av kväverening i kalla klimat. Det övergripande målet har varit att öka kunskapen om kväverening och nedbrytning av hormoner vid låga temperaturer och att identifiera kunskapsluckor.

    Denna kunskap ska stödja planering och implementering av reningsprocesser vid höga hormonhalter i avloppsvatten i kalla klimat.Föreliggande rapport sammanställer dels kunskap om rening av hormoner och hormonstörande ämnen vid avloppsreningsverk utifrån i huvudsak en svensk kontext, dels resultat från genomförda pilottester vid Fillan ARV i Sundsvall. Genomgående under projektperioden observerades att kväve kunde reduceras med mer än 70 % i genomsnitt. Veckovisa analyser av hormoner och hormonstörande effekter, samt månadsvisa analyser av läkemedelsrester, visade däremot på en stor variation av inkommande halter och reningrader.

    En genomgående, och förväntad trend, var att halterna av östrogena effekter följde detekterade halter av både östron och östradiol. Halten av etinylöstradiol, däremot, detekterades inte i något av de analyserade proverna under hela projektperioden. Vid de tillfällen där reduktionsgraden av hormonerna var närmare 80 %, var det fortfarande höga halter av hormoner i utgående avloppsvatten, vilket bland annat kunde förklaras med höga inkommande halter. Inga tydliga samband mellan höga reduktionshalter av hormoner och kväve eller andra processrelaterade aspekter kunde observeras. Detta resultat indikerar att reduktion av hormoner och kväverening i huvudsak utförs av skilda grupper av mikroorganismer. En högre reduktion av hormoner kunde däremot observeras i filtrerade prover relativt ofiltrerade, något som delvis kan förklara den låga hormonreduktion efter MBBR-processen som vid dessa försök saknade en partikelavskiljning. 

    Sammanfattningsvis kan det konstateras att hypotesen kring att kväverening effektivt kan rena bort hormoner i kalla klimat med en MBBR-teknik inte kan bekräftas vid de betingelser som utvärderats i denna rapport. Det kunde inte heller bekräftas när temperaturen ökade med 4 °C i processen eftersom ingen signifikant påverkan på reningsgraden för varken hormoner, hormonstörande effekter eller läkemedelsrester kunde observeras. Utifrån data från denna rapport kan det därför konstateras att vid anläggningar i norra Sverige, där höga hormonhalter utgör huvudproblemet avseende påverkan på recipient, kan en avancerad rening för att ta bort hormoner och deras effekter behövas, åtminstone i de fall där biofilmsprocesser såsom MBBR implementeras. 

    Download full text (pdf)
    fulltext
  • 13.
    Borzooei, Sina
    et al.
    IVL Swedish Environmental Research Institute.
    Cascone, Claudia
    IVL Swedish Environmental Research Institute.
    Hållén, Joakim
    IVL Swedish Environmental Research Institute.
    Lavenius, Axel
    IVL Swedish Environmental Research Institute.
    Wilhelmsson, Jens
    IVL Swedish Environmental Research Institute.
    Fridén, Håkan
    IVL Swedish Environmental Research Institute.
    Strandberg, Johan
    IVL Swedish Environmental Research Institute.
    Prediction of turbidity in a lake raw water source: Use of Artificial Intelligence in drinking water production2024Report (Other academic)
    Abstract [en]

    Turbidity, which is the cloudiness or haziness of water caused by large numbers of individual particles, is a critical factor for drinking water producers. High turbidity can harbour harmful microorganisms and reduce the effectiveness of disinfection processes, making it essential to monitor and manage to ensure safe drinking water.This study was conducted at the Rökebo water production plant, which produces drinking water for Sandviken and nearby areas, serving around 29,000 people. The treatment process includes several steps, such as chemical precipitation, filtration, UV treatment, and chlorination, to ensure the water is safe to drink.

    A new plant is being constructed to use only lake water and will include additional treatment steps to remove natural organic matter.Lake Öjaren is moderately sized, covering 21 square kilometres with an average depth of 4.66 meters, which means it is a shallow lake. The depth and shape of the lake influence how it responds to wind and weather, which can stir up sediments and affect water clarity. The catchment area of Lake Öjaren consists mainly of forest and moraine but has 5.5% clear-cuts, which contribute to higher turbidity levels in combination with heavy precipitation.

    Climate change is expected to bring warmer temperatures and more rain to Sweden, affecting Lake Öjaren’s water quality and availability. Projections indicate that runoff to the lake will increase by about 15%, which is more than the average for the area. Less precipitation will fall as snow, leading to more water flowing into the lake during winter. These changes will likely increase the levels of nutrients and organic matter in the lake, increasing turbidity and calling for an adaptation strategy at the drinking water plant. We tested several machine learning models to predict water turbidity, including ElasticNet Regression, RandomForestRegressor, GradientBoostingRegressor, and XGBoost.

    These models helped us understand which factors most affect turbidity. For example, the RandomForestRegressor model performed well, showing that air temperature, wind speed, and rainfall from the past few days were important predictors. The XGBoost model also provided valuable insights, particularly emphasising the impact of rainfall from four days prior. Despite using general meteorological data, our models successfully predicted local conditions in Lake Öjaren, demonstrating their robustness. However, capturing extreme turbidity events remains challenging. High-quality data and advanced techniques are crucial for improving predictive accuracy. Future work should focus on collecting more detailed data and refining models to support effective water management and mitigate climate change impacts on the drinking water production. This ongoing research is vital for ensuring a reliable drinking water supply, even under changing environmental conditions.

    Download full text (pdf)
    fulltext
  • 14.
    Yang, Jingjing
    et al.
    IVL Swedish Environmental Research Institute.
    Kanders, Linda
    IVL Swedish Environmental Research Institute.
    Bornold, Niclas
    IVL Swedish Environmental Research Institute.
    Vägledning för lustgasmätning vid avloppsreningsverk2022Report (Other academic)
    Abstract [en]

    The report goes through what a process engineer needs to know about nitrous oxidemeasurement at a wastewater treatment plant: analysis technology, measurement methods,sampling methods and calculation of emissions. It concludes with guidance givingadvice and recommendations. It is important to understand the challenges and limitationsthat exist in nitrous oxide measurement in order to be able to take uncertaintiesinto account, for example when the measurement results are to be used as a basis forimproving the treatment plant’s climate performance.Nitrous oxide is a powerful greenhouse gas that is emitted from wastewater treatmentplants, among other things, during the storage of sludge and during biological nitrogenpurification. Svenskt Vatten has set the goal that the wastewater industry should beclimate neutral by 2030. Therefore, it is important to locate and quantify emissions ofnitrous oxide to be able to take measures and optimize the conditions in the nitrogenpurification processes where incoming ammonium in the water phase turns into nitrogengas that is released into the air.The nitrogen removal processes are complex and are carried out by several differentmicroorganisms. Nitrous oxide emissions occur at various points in the processes andare difficult to avoid. To reduce emissions of nitrous oxide, one must understand whenand where nitrous oxide production is greatest and how it occurs. These nitrous oxidesources can only be found through measurement and data analysis. The project hascompiled knowledge about different measurement methods for nitrous oxide measurementand how these and different physical conditions in connection with nitrous oxidemeasurement affect measurement data and how they are evaluated.The report goes through the measuring techniques for nitrous oxide that are availabletoday for gas and water phases. For gaseous form, gas chromatography, optical techniquesand amperometric (electrochemical) techniques are used. The gas is collectedwith hoods over basin surfaces or via the ventilation. The gas can also be measureddirectly in the atmosphere with micrometeorological methods such as satellite measurementor CRDS, which is a form of laser absorption spectroscopy.In this study, a series of nitrous oxide measurements was carried out on differentnitrogen removal processes. All measurements were made with hood measurements atthe Henriksdal treatment plant in Stockholm and the Himmerfjärden treatment plant,south of Södertälje. The measurements were carried out with different types of hoods(active, semi-active and passive) and different sizes of the hoods. The measurementscarried out cover nitrogen removal plants outdoors and inside rock rooms, main streamand reject water treatment, as well as measurements in ventilation systems.In the last section of the report recommendations are found. First, the purpose ofthe measurement must be defined. The purpose can be, for example, to calculate totalemissions, identify point emissions or to optimize the process. Once the purpose isdefined, you choose how, where, when and for how long time to measure. The requirementson the measurements and which supplementary data are needed must thereafterbe identified. When the measurements are done, it is time to evaluate, calculate and doan uncertainty analysis. The final step is to report, take decisions and/or to take actionto optimize the process.

    Download full text (pdf)
    fulltext
  • 15.
    Önnby, Linda
    et al.
    IVL Swedish Environmental Research Institute.
    Hedman, Fredrik
    IVL Swedish Environmental Research Institute.
    Karlsson, Linus
    IVL Swedish Environmental Research Institute.
    Baresel, Christian
    IVL Swedish Environmental Research Institute.
    Kartläggning av organiska mikroföroreningar – Töreboda avloppsreningsverk: Kartläggning, miljöpåverkan och åtgärdsförslag2023Report (Other academic)
    Abstract [sv]

    Töreboda avloppsreningsverk (ARV) är ett mindre reningsverk i Västra Götaland som tar emot avloppsvatten från Töreboda tätort, en livsmedelsindustri samt en liten andel från en nedlagd deponi i kommunen. Reningsverkets recipient är Friaån. Tidigare undersökningar av vattenkvalitén i Friaån har vid ett provtillfälle indikerat höga koncentrationer av mikroföroreningarna diklofenak, östradiol och perfluorooktansyra (PFOS), som är ett vanligt förekommande ämne inom ämnesgruppen perfluorerade alkylsubstanser (PFAS). Någon detektion av etinylöstradiol, ett ämne som har stark östrogen effekt i den akvatiska miljön, gjordes inte, utan detta ämne rapporterades under rapporteringsgränsen.

    För de kvantifierade ämnena gällde särskilt att de påträffats vid halter som överstiger bedömningsgrunder för godkänd ekologisk status för inlandsytvatten enligt Havs- och vattenmyndighetens författningssamling. IVL Svenska Miljöinstitutet (IVL) har genomfört en kartläggning av mikroföroreningar för att bedöma risker och åtgärder som kan bli aktuellt för Töreboda ARV i framtiden avseende avancerad rening av mikroföroreningar såsom antibiotika, läkemedel och hormoner. Riskbedömningen utgår från hur ARV påverkar recipienten.Kartläggningen av mikroföroreningar har genomförts genom provtagning vid fyra tillfällen under ett års tid vid i) reningsverket och ii) i recipienten.

    Inkommande och utgående avloppsvatten vid reningsverket provtogs genom veckoprover. Recipientprover uppströms och nedströms reningsverkets utsläppspunkt togs som stickprover. Analyser inom projektet har avsett läkemedelsrester, hormoner, antibiotika, fenoler, östrogen effekt samt PFAS-ämnen. Utöver ARV och recipient, har analys av lakvattenprover också genomförts avseende PFAS ämnen, som ett led i att utvärdera påverkan från källor uppströms ARV. För att bedöma recipientpåverkan har två tillvägagångssätt använts. Dels har recipienthalten predikterats genom en beräknad utspädning av halten i utgående avloppsvatten, dels har uppmätta halter i recipienten nyttjats. Beräkning av utspädningen i recipienten gjordes med hjälp av aktuellt flöde ut från ARV och aktuellt flöde i recipienten. Det senare erhölls genom att använda flödesdata från SMHI:s flödesmodell S-hype.

    Recipientbedömning har genomförts genom att beräkna riskkvoter (PEC/PNEC-kvoter där PEC står för predicted environmental concentration och PNEC står för predicted no effect concentration). När kvoten överskrider 1 indikeras att det föreligger en risk i recipienten.Kartläggningen av mikroföroreningar från Töreboda ARV samt upp- och nedströms i recipienten visade att halterna av mikroföroreningar, i tre fall av fyra, var högre nedströms jämfört med provpunkten uppströms reningsverkets utsläppspunkt. Halterna av PFAS-ämnen in och ut från reningsverket indikerade också att de låg relativt högt vid jämförelse med medelhalten för andra svenska reningsverk.

    Uppströmskällor till Töreboda ARV som kan bidra med PFAS-ämnen är den nedlagda deponin i Borreboda, som bidrar med lakvatten motsvarande ca 1 % av det årliga inflödet. PFAS-belastningen från lakvattnet visade sig motsvara ca 12,1 % av den totala årsbelastningen in till reningsverket.Recipientbedömningen indikerade att det råder hög miljörisk för sex mikroföroreningar nedströms recipienten, inklusive PFOS och diklofenak som det finns nationella bedömningsgrunder för god status för. PFOS återfanns dock både upp- och nedströms Töreboda ARV och det finns därmed uppströms källor för denna förekomst. Sammantaget, och sett till aktuella bedömningsgrunder, kan det därmed inte uteslutas att det finns ett behov av avancerad rening vid Töreboda ARV. PFOS-förekomsten bör dock åtgärdas vid källan och inte primärt vid Töreboda ARV. När förslaget till nytt EQS-direktiv beaktas utgör även bisfenol A en risk för recipienten, samt PFAS24, uttryckt som PFOA-ekvivalenter, vilka observeras med hög risk både upp- och nedströms Töreboda ARV. Även diklofenak tillkommer som ett ämne som utgör hög risk eftersom det befintliga gränsvärdet föreslås att sänkas i nya EQS direktivet.

    Sett till befintliga och möjliga tekniker för Töreboda ARV fungerar både i) ozon efterföljt av efterbehandling i form av exempelvis GAK-filtrering, och ii) GAK som ett ensamt reningssteg. GAK står för Granulerat Aktivt Kol. För ozon är det ämnet oxazepam som kan verka begränsande och särskilt vid så låg utspädning som fem eller lägre. I detta fall resulterar det i att ozondosen behöver ligga inom intervallet 0,7 - 1,0 mg ozon/mg DOC. För GAK är det ämnena diklofenak, oxazepam och furosemid som kan verka begränsande vid låg utspädning i förhållande till högflöde, och eventuellt resultera i att ett filterbyte sker tidigare än 20 000 bäddvolymer. Avseende PFOS gäller för båda teknikerna att det är begränsande vid låg utspädning. Detta ämne, och PFAS11 i sin helhet, bör dock åtgärdas uppströms och därför har inget större fokus ägnats åt PFOS-åtgärd vid reningsverket. Ett avancerat reningssteg föreslås placeras sist i den befintliga reningsprocessen och kan med fördel föregås av ett filtersteg såsom sandfilter och/eller mikrosil för att minska risken för att partiklar går in i det avancerade reningssteget.

    Om ozon efterföljs av GAK-filtrering kan fler mikroföroreningar avskiljas jämfört med när ozon efterföljs av sandfilter. Det behövs ca fyra GAK-filter om de dimensioneras med en volym på 50 m3 och årligen uppskattas det att ca 52 ton aktivt kol förbrukas.Framgent rekommenderas Töreboda ARV att genomföra en teknikutredning för att i detalj förstå teknikernas kostnad, möjlighet och eventuella miljövinst. PFAS källor uppströms reningsverket bör också utredas. Det kan även vara av vikt att förstå hur reningsverkets flöde påverkar recipientflödet över ett helt år, när det både råder låg- respektive högflöde

    Download full text (pdf)
    fulltext
  • 16.
    Ødegaard, Hallvard
    et al.
    SET.
    Rusten, Bjørn
    Aquateam Cowi.
    Karlsson, Linus
    IVL Swedish Environmental Research Institute.
    En kunskapssammanställning: Avloppsvattenrening för att reducera kväve i kalla avloppsvatten med MBBR-processen2023Report (Other (popular science, discussion, etc.))
    Abstract [sv]

    Att rena bort kväve från avloppsvatten görs med en biologisk process på kommunala avloppsreningsverk. Processen är temperaturberoende och fungerar sämre när temperaturen i avloppsvattnet sjunker under tio grader. I norra Sverige är avloppsvattnet kallt under långa perioder varje år, och reningsverk i norr har i dagsläget inget krav på att reducera kväve. Detta kan dock komma att ändras med en striktare lagstiftning från EU. För att undersöka hur kväve kan renas bort även från kallt avloppsvatten driver IVL tillsammans med ett flertal kommunala aktörer i norr ett projekt där biofilmsprocessen med bärare (MBBR) testas med kallt avloppsvatten. Utöver att testa hur kall kväverening fungerar i praktiken har vi även genomförts en kunskapssammanställning i projektet. Sammanställningen har gjorts av Hallvard Ødegaard och Bjørn Rusten och inkluderar tidigare forskningsprojekt samt de fullskaleanläggningar där MBBR-tekniken redan körs med kallt avloppsvatten.

    Rapporten är uppdelade i fyra kapitel och inleder med en introduktion till MBBR-tekniken. Därefter följer en genomgång av hur MBBR-processen kan implementeras för avskiljning av kväve och fosfor i kallt avloppsvatten. I kapitel tre ges en sammanställning av genomförd forskning med studier från Norge, Kanada, USA, Italien och Sverige. Kapitel fyra djupdyker sedan i design och prestanda för fyra norska fullskaleanläggningar där MBBR-processen används för att reducera kvävehalten i kallt avloppsvatten. Dessa är Lillehammer avloppsreningsverk (ARV), Nordre Follo ARV, Nerdre Romerike ARV och Gardemoen ARV.

    Projektgruppen hoppas att denna rapport ska bidra till att kunskapsläget ökar avseende kväverening i kalla avloppsvatten så att kostnadseffektiva och moderna anläggningar kan byggas på de reningsverk som i framtiden får kvävekrav.

    Download full text (pdf)
    fulltext
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf