IVL Swedish Environmental Research Institute

ivl.se
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Guerrieri, Rossella
    et al.
    Cáliz, Joan
    Mattana, Stefania
    Barceló, Anna
    Candela, Marco
    Elustondo, David
    Fortmann, Heike
    Hellsten, Sofie
    IVL Swedish Environmental Research Institute.
    Koenig, Nils
    Lindroos, Antti-Jussi
    Matteucci, Giorgio
    Merilä, Päivi
    Michalski, Greg
    Nicolas, Manuel
    Thimonier, Anne
    Turroni, Silvia
    Vanguelova, Elena
    Verstraeten, Arne
    Waldner, Peter
    Watanabe, Mirai
    Casamayor, Emilio O.
    Peñuelas, Josep
    Mencuccini, Maurizio
    Substantial contribution of tree canopy nitrifiers to nitrogen fluxes in European forests2024In: Nature Geoscience, ISSN 1752-0894, E-ISSN 1752-0908, Vol. 17, no 2, p. 130-136Article in journal (Refereed)
    Abstract [en]

    Human activities have greatly increased the reactive nitrogen in the biosphere, thus profoundly altering global nitrogen cycling. The large increase in nitrogen deposition over the past few decades has led to eutrophication in natural ecosystems, with negative effects on forest health and biodiversity. Recent studies, however, have reported oligotrophication in forest ecosystems, constraining their capacity as carbon sinks. Here we demonstrate the widespread biological transformation of atmospheric reactive nitrogen in the canopies of European forests by combining nitrogen deposition quantification with measurements of the stable isotopes in nitrate and molecular analyses across ten forests through August–October 2016. We estimate that up to 80% of the nitrate reaching the soil via throughfall was derived from canopy nitrification, equivalent to a flux of up to 5.76 kg N ha−1 yr−1. We also document the presence of autotrophic nitrifiers on foliar surfaces throughout European forests. Canopy nitrification thus consumes deposited ammonium and increases nitrate inputs to the soil. The results of this study highlight widespread canopy nitrification in European forests and its important contribution to forest nitrogen cycling.

  • 2.
    Kronnäs, Veronika
    et al.
    IVL Swedish Environmental Research Institute.
    Lucander, Klas
    Zanchi, Giuliana
    Stadlinger, Nadja
    Belyazid, Salim
    Akselsson, Cecilia
    Effect of droughts and climate change on future soil weathering rates in Sweden2023In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 20, no 10, p. 1879-1899Article in journal (Refereed)
    Abstract [en]

    In a future warmer climate, extremely dry, warm summers might become more common. Soil weathering is affected by temperature and precipitation, and climate change and droughts can therefore affect soil chemistry and plant nutrition. In this study, climate change and drought effects on soil weathering rates and release of Ca, Mg, K and Na were studied on seven forest sites across different climates in Sweden, using the dynamical model ForSAFE.

    Two climate scenarios were run, one medium severity climate change scenario from IPCC (A1B) and one scenario where a future drought period of 5 years was added, while everything else was equal to the first scenario. The model results show a large geographical variation of weathering rates for the sites, without any geographical gradient, despite the strong dependence of temperature on weathering and the strong gradient in temperature in Sweden. This is because soil texture and mineralogy have strong effects on weathering.

    The weathering rates have a pronounced seasonal dynamic. Weathering rates are low during winters and generally high, but variable, during summers, depending on soil moisture and temperature. According to the model runs, the future yearly average weathering rates will increase by 5 %–17 % per degree of warming. The relative increase is largest in the two southeastern sites, with low total weathering rates. At sites in southern Sweden, future weathering increase occurs throughout the year according to the modelling.

    In the north, the increase in weathering during winters is almost negligible, despite larger temperature increases than in other regions or seasons (5.9 ∘C increase in winter in Högbränna; the yearly average temperature increase for all sites is 3.7 ∘C), as the winter temperatures still will mostly be below zero. The drought scenario has the strongest effect in southern Sweden, where weathering during the later parts of the drought summers decreases to typical winter weathering rates.

    Soil texture and amount of gravel also influence how fast the weathering decreases during drought and how fast the soil rewets and reaches normal weathering rates after the drought. The coarsest of the modelled soils dries out and rewets quicker than the less coarse of the modelled soils. In the north, the soils do not dry out as much as in the south, despite the low precipitation, due to lower evapotranspiration, and in the northernmost site, weathering is not much affected. Yearly weathering during the drought years relative to the same years in the A1B scenario are between 78 % and 96 % for the sites.

    The study shows that it is crucial to take seasonal climate variations and soil texture into account when assessing the effects of a changed climate on weathering rates and plant nutrient availability.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf