IVL Swedish Environmental Research Institute

ivl.se
Endre søk
Begrens søket
1 - 13 of 13
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Fagerström, Anton
    et al.
    IVL Svenska Miljöinstitutet.
    Klugman, Sofia
    IVL Svenska Miljöinstitutet.
    Nyberg, Theo
    IVL Svenska Miljöinstitutet.
    Karltorp, Kersti
    IVL Svenska Miljöinstitutet.
    Hernández Leal, Maria
    IVL Svenska Miljöinstitutet.
    Nojpanya, Pavinee
    IVL Svenska Miljöinstitutet.
    Johansson, Kristin
    IVL Svenska Miljöinstitutet.
    BeKind - Circularity and climate benefit of a bio- and electro-based chemical industry - effects of transitions in petrochemical value chains2022Rapport (Annet vitenskapelig)
    Abstract [en]

    This document reports the finding from the project BeKind: Circularity and climate benefit of a Bio- and Electro-based Chemical Industry - effects of transitions in petrochemical value chains. The aim of the BeKind-project has been to identify challenges for transition to a circular and climate-neutral petrochemical industry, to develop proposals for remedial activities for these obstacles and challenges, and to quantify the benefits such a transition can have for circularity, climate and social sustainability. The focus of the project has been on industrial production of liquid fuels and plastics. 

    Fulltekst (pdf)
    fulltext
  • 2.
    Fagerström, Anton
    et al.
    IVL Svenska Miljöinstitutet.
    Klugman, Sofia
    IVL Svenska Miljöinstitutet.
    Poulikidou, Sofia
    IVL Svenska Miljöinstitutet.
    Anderson, Sara
    IVL Svenska Miljöinstitutet.
    Biojet Östersund – Supplementary studies and international cooperation - Supplementary studies to the project: Large scale Bio-Electro-Jet fuel production integration at CHP-plant in Östersund, Sweden2021Rapport (Annet vitenskapelig)
    Abstract [en]

    This study was performed with the ambition to clarify some of the findings from the previous project and also to address the possible hurdles and possibilities that exists for the implementation of an industrial BEJF production facility at the Lugnvik site in Östersund, Sweden. Also, the development of a roadmap for implementation of the concept is included in this study. The study reports on the establishment of international consortia for both continued research and the realization of the full-scale facility. Hence, two parallel paths are described (research and full-scale) and a roadmap depicting possible ways forward for those paths during the upcoming 5 years is presented. One important conclusion is that funding should be sourced separate for the two paths to prevent the implementation of the full-scale plant being dependent on research funding. However, the research path has great potential to provide valuable, knowledge also for the full-scale case. As a general next step, it is proposed that the roadmap developed within this project is followed for the upcoming five years. As a more specific next step, a follow up detailed pre-study is proposed that would enhance the possibility to go deeper into the concept.

    Fulltekst (pdf)
    FULLTEXT01
  • 3.
    Fransson, Nathalie
    et al.
    IVL Svenska Miljöinstitutet.
    Klugman, Sofia
    IVL Svenska Miljöinstitutet.
    Unluturk, Burcu
    IVL Svenska Miljöinstitutet.
    Romanchenko, Dmytro
    IVL Svenska Miljöinstitutet.
    Lygnerud, Kristina
    IVL Svenska Miljöinstitutet.
    Swartling, Stefan
    Hellström, Göran
    Bergström, Roger
    Ett klimatneutralt Kiruna 2025 med hjälp av spillvärme2023Rapport (Annet vitenskapelig)
    Abstract [sv]

    Den pågående stadsomvandlingen i Kiruna, att en stor del av staden måste flyttastill följd av LKAB:s fortsatta gruvverksamhet, skapar möjligheter att etablera etteffektivare energisystem och bidra till att uppnå stadens klimatmål. I dag tillgodosescirka 15% av stadens fjärrvärmebehov med restvärme från LKAB och målsättningenpå sikt är att nå 100% restvärme i systemet. Investeringsbeslut som togs 2021kommer att resultera i en ökning av restvärmeandelen på upp mot 70% till 2024 dåLKAB frigör högvärdig restvärme genom att internt ta tillvara på lågtempereradvärme. För att öka andelen restvärme ytterligare finns ett behov av att lagra värmefrån sommarperioden då det finns ett överskott till vinterperioden när behovet ärsom störst.

    I projektet skapas en helhetsbild av restvärmelösningen i Kiruna frånsamspel mellan aktörer till teknik vilket genererar ny kunskap om effektivenergiomställning till hållbara städer med restvärmeåtervinning.Det finns flera alternativ för termiska säsongslager vars tillämplighet baseras påtermogeologisk förutsättningar. Borrhålslager och bergrumslager valdes ut förvidare analys givet förutsättningarna i Kiruna. Genom energisystemmodelleringoptimerades Kirunas fjärrvärmesystem fram till år 2040 genom scenarioanalys. Medett energilager i systemet möjliggörs att en större mängd restvärme kan användastotalt sett över året och särskilt minskar det behovet av värmeproduktion underperioden med störst värmebehov (vintermånaderna), vilket innebär minskadanvändning av spetslastpannor. En nyttokostnadsanalys genomfördes på tvåmodellscenarier.

    Båda scenarierna resulterar i ekonomiska kostnadsbesparingar ochminskade externa kostnader (förbättrad folkhälsa som minskar till exempel uteblivetarbete, sjukvårdskostnader och förtidiga dödsfall) jämfört med referensscenariet, attinte uppföra ett energilager.Ett energilager, borrhålslager och bergrumslager, i storleksordningarna 30 GWh och20 MW simulerades i Kirunas fjärrvärmesystem. Baserat på det värmebehov ochrestvärmeleverans som ligger till grund för lagersimuleringar visar resultaten pågod prestanda framför allt för ett borrhålslager kombinerat med värmepumpar. Förde simulerade alternativen, samt ett jämförelsealternativ med en biobränslepanna,togs investeringskalkyler fram som visade på en övervägande positiv kalkyl för ettborrhålslager med värmepumpar.

    Totalinvesteringen för alternativet med borrhåloch värmepump uppgår till ca. 300 Mkr. Borrhål och värmeväxlare är ungefär 1/3 avinvestering, värmepumpskostnad 1/3 och resterande projektkostnader ochinstallation. Återbetalningstiden är drygt 9 år. Investeringskostnaden för anläggningav bergrumslager är hög vilket försämrar lönsamheten. Troligen skulle investeringskostnaden vara betydligt lägre om befintlig geologisk formation finnstillgänglig att konvertera till energilager. Sådan formation har inte identifierats idetta projekt men givet Kirunas långa gruvverksamhet är det möjligt att fleralternativ finns som skulle kunna utredas.Underlaget som är framtaget inom ramarna för detta projekt pekar på att ettsäsongsenergilager för att ta tillvara på mer restvärme är den långsiktigt optimala lösningen för Kirunas värmeförsörjning. En initial uppskattning av tidplan visar påatt ett sådant lager skulle kunna tas i drift 2028. För det valda energilagret har enhandlingsplan tagits fram som visar nästa steg som behöver tas i Kiruna för attkomma närmare att realisera energilagret och därmed kunna nyttja mer restvärme.

    Lågtempererad fjärrvärme har diskuterats länge i Kiruna. Kombination med ettenergilager och lägre framledningstemperatur skulle vara gynnsamt eftersomurladdningstemperaturen från energilagret inte skulle behöva höjas lika mycket.Skulle Kiruna i ett senare skede, efter att energilagret har uppförts, sänkatemperaturen i nätet skulle det för ett borrhålslager med värmepumpar innebära etteffektivare och lönsammare system. Framför allt skulle mindre el behövas tillvärmepumparna vilket är gynnsamt givet Kiruna Krafts ambitioner om att minskaandelen el som går åt till värmeförsörjningen.Det finns en stor outnyttjad restvärmepotential i Sverige och Europa. Genom enfallstudie av Kiruna har lärdomar för andra städer om effektiv integrering avrestvärme genererats. Framgångsfaktorerna i Kiruna och lösningar påförekommande hinder kan hjälpa andra städer att etablera ett effektivt ochlångvarigt samspel kring industriell restvärme. Att initialt fokusera på att bygga enrelation mellan parterna och etablera förtroende är en viktig nyckel för att kunnaidentifiera lösningar på andra förekommande barriärer. Flera ekonomiska barriärerhar haft stor påverkan och de har lösts genom transparens i kalkylerna, med ettgemensamt uppsatt mål att samarbetet inte ska påverka stadens invånareekonomiskt och genom statligt finansieringsstöd.

    En viktig framgångsfaktor har varit etablerandet av en strategisk samarbetsplattform som garanterat enkontinuerlig dialog. En kontinuerlig dialog krävs dels under etablerandet avsamarbetet men är lika viktig under pågående leverans för att inte riskera att tappabort relationen och förtroenden.För att identifiera vilka faktorer som kan påverka att innovativa energilösningarimplementeras för restvärmeåtervinning har projektet gjort en jämförande analys avbeslutsprocessen vid valet av fjärrvärmeteknik i Nya Kiruna Centrum ochBrunnshög i Lund. Beslutsprocessen resulterade i konventionell fjärrvärmeteknik tillNya Kiruna Centrum och ett lågtempererat fjärrvärmesystem i Brunnshög. Eninnovativ målsättning, särskilt i de externa direktiven, kunskap omrestvärmeåtervinning, antingen internt eller hos en långvarig samarbetspartner ochen holistisk syn på staden där många aktörer engageras för att man bättre ska kunnaförutse förändringar på lång sikt har identifierats som viktiga. För effektivenergiomställning av städer med restvärmeintegrering behöverrestvärmepotentialen kartläggas och inkluderas i stadens energiplanering i ett tidigtskede och i samverkan med relevanta aktörer. Energiplaneringen bör ske samtidigtsom, och i samråd med, andra större förändringar i staden för att undvikasuboptimala system där energieffektiviseringsprincipen inte tillämpas.

    Fulltekst (pdf)
    fulltext
  • 4.
    Fridahl, Mathias
    et al.
    Linköping University.
    Schenuit, Felix
    German Institute for International and Security Affairs.
    Lundberg, Liv
    Research Institute of Sweden.
    Möllersten, Kenneth
    IVL Svenska Miljöinstitutet.
    Böttcher, Miranda
    German Institute for International and Security Affairs.
    Rickels, Wilfried
    Kiel Institute for the World Economy.
    Hansson, Anders
    Linköping University.
    Novel carbon dioxide removals techniques must be integrated into the European Union’s climate policies2023Inngår i: Communications Earth & Environment, E-ISSN 2662-4435, Vol. 17, nr 1, artikkel-id 459Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In comparison to its emissions reductions policy, the European Union’s (EU) policy for achieving carbon dioxide (CO2) removals is underdeveloped. Only in forestry and land use management does current EU law allow its Member States to use removals to comply with their climate policy commitments. This excludes the potential role that novel removals could play for effectively and efficiently addressing climate policy objectives. Novel removals with significant European potential include bioenergy with carbon capture and storage, biochar, enhanced weathering, marine removal options like alkalinity enhancement, and direct air carbon capture and storage. Emissions reductions are crucial to mitigating climate change. However, in the past decade, the world community’s failure to reduce emissions at a sufficient speed to avoid dangerous climate change has become obvious.

    This reality acutely necessitates the development of innovative sets of policies to spur the deployment of novel CO2 removals, an urgency that is further underlined by the long lead time for many novel removal methods. Disregarding the potential of novel removals is incommensurate with the scale of the challenge of achieving EU’s commitment to reach net-zero greenhouse gas emissions by 2050. We argue that the current policy framework neither provides Union-wide economic incentives for novel CO2 removals, nor does it encourage EU Member States to develop national policy incentives. Our proposed solutions includes incentivizing removals through a conditional integration into the EU Emissions Trading System (ETS), expanding the portfolio of removal methods in the Land-Use, Land-Use Change and Forestry (LULUCF) Regulation, and to manage anticipations regarding which residual emissions that need to be counterbalanced by removals.

  • 5.
    Hansson, Julia
    et al.
    Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, Hörselgången 4, 412 96 Gothenburg, Sweden;IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Klugman, Sofia
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Lönnqvist, Tomas
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Elginoz, Nilay
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Granacher, Julia
    Industrial Process and Energy Systems Engineering (IPESE), École Polytechnique Fédérale de Lausanne, 1951 Sion, Switzerland.
    Hasselberg, Pavinee
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Hedman, Fredrik
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Efraimsson, Nora
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Johnsson, Sofie
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Poulikidou, Sofia
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Safarian, Sahar
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Tjus, Kåre
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Biodiesel from Bark and Black Liquor—A Techno-Economic, Social, and Environmental Assessment2023Inngår i: Energies, E-ISSN 1996-1073, Vol. 17, nr 1, s. 99-99Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A techno-economic assessment and environmental and social sustainability assessments of novel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill serves as the reference case and large-scale biofuel-production-process integration is explored. Relatively low greenhouse gas emission levels can be obtained for the FT biodiesel (total span: 16–83 g CO2eq/MJ in the assessed EU countries).

    Actual process configuration and low-carbon electricity are critical for overall performance. The site-specific social assessment indicates an overall positive social effect for local community, value chain actors, and society. Important social aspects include (i) job creation potential, (ii) economic development through job creation and new business opportunities, and (iii) health and safety for workers.

    For social risks, the country of implementation is important. Heat and electricity use are the key contributors to social impacts. The estimated production cost for biobased crude oil is about 13 €/GJ, and it is 14 €/GJ (0.47 €/L or 50 €/MWh) for the FT biodiesel. However, there are uncertainties, i.e., due to the low technology readiness level of the gasification technologies, especially wet gasification. However, the studied concept may provide substantial GHG reduction compared to fossil diesel at a relatively low cost.

  • 6.
    Hansson, Julia
    et al.
    Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, Hörselgången 4, 412 96 Gothenburg, Sweden;IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Klugman, Sofia
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Lönnqvist, Tomas
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Elginoz, Nilay
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Granacher, Julia
    Industrial Process and Energy Systems Engineering (IPESE), École Polytechnique Fédérale de Lausanne, 1951 Sion, Switzerland.
    Hasselberg, Pavinee
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Hedman, Fredrik
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Efraimsson, Nora
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Johnsson, Sofie
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Poulikidou, Sofia
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Safarian, Sahar
    IVL Swedish Environmental Research Institute, Aschebergsgatan 44, 411 33 Gothenburg, Sweden.
    Tjus, Kåre
    IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden.
    Biodiesel from Bark and Black Liquor—A Techno-Economic, Social, and Environmental Assessment2023Inngår i: Energies, E-ISSN 1996-1073, Vol. 17, nr 1, s. 99-99Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A techno-economic assessment and environmental and social sustainability assessments ofnovel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill serves as the reference case and large-scale biofuel-production-process integration is explored. Relatively low greenhouse gas emission levels can be obtained for the FT biodiesel (total span: 16–83 g CO2eq/MJ in the assessed EU countries). Actual process configuration and low-carbon electricity are critical for overall performance.

    The site-specific social assessment indicates an overall positive social effect for local community, value chain actors, and society. Important social aspects include (i) job creation potential, (ii) economic development through job creation and new business opportunities, and (iii) health and safety for workers. For social risks, the country of implementation is important. Heat and electricity use are the key contributors to social impacts.The estimated production cost for biobased crude oil is about 13 €/GJ, and it is 14 €/GJ (0.47 €/L or50 €/MWh) for the FT biodiesel. However, there are uncertainties, i.e., due to the low technologyreadiness level of the gasification technologies, especially wet gasification. However, the studiedconcept may provide substantial GHG reduction compared to fossil diesel at a relatively low cost.

  • 7.
    Harris, Steve
    et al.
    IVL Svenska Miljöinstitutet.
    Johansson, Henrik
    IVL Svenska Miljöinstitutet.
    Bhasin, Aditi
    IVL Svenska Miljöinstitutet.
    Klugman, Sofia
    IVL Svenska Miljöinstitutet.
    Martin, Michael
    IVL Svenska Miljöinstitutet.
    Strategic Roadmap for Gotland Industrial Symbiosis Park2023Rapport (Annet vitenskapelig)
    Abstract [en]

    The Roadmap for the Gotland Industrial Symbiosis Park (GISP) is the culmination of the GISP project. IVL was approached by Tillväxt Gotland and Region Gotland with the desire to develop the park based on industrial symbiosis (IS). Industrial symbiosis is a captivating concept that seeks to emulate nature where waste resources or by-products are utilized by other entities. The aim was therefore to identify the most appropriate development strategy to maximise industrial symbiosis, resource efficient production and the sustainability outcomes of the park. The chosen site is 2 km north of Visby, adjacent to the main airport. This document summarises the research project and its findings before outlining a suggested Roadmap for GISP’s development. It also brings together the research reports conducted during the project (Appendices 1-3) that include a literature review, review of regional strengths and opportunities, and a sustainability assessment of potential scenarios. 

    Fulltekst (pdf)
    fulltext
    Download (pdf)
    Appendix 1
    Download (pdf)
    Appendix 2
    Download (pdf)
    Appendix 3
  • 8.
    Klugman, Sofia
    et al.
    IVL Svenska Miljöinstitutet.
    Nilsson, Johanna
    IVL Svenska Miljöinstitutet.
    Hackl, Roman
    IVL Svenska Miljöinstitutet.
    Holmgren, Kristina
    IVL Svenska Miljöinstitutet.
    Harvey, Simon
    Energy Integration of Domsjö Biorefinery Cluster2019Rapport (Annet vitenskapelig)
    Abstract [en]

    Within the Domsjö Biorefinery cluster in Örnsköldsvik, all the industries are cooperating regarding energy. The cluster consists of one wood pulp production facility, two bio-chemical facilities and one energy facility.

    In this study, we have analysed how efficient the steam is used within the industries. Are steam of right pressure and temperature used for the right purposes? To what extent could steam be replaced by district heating? And, how big is the potential to use simultaneous heat and cold demand for energy integration? The method for energy analysis was “pinch analysis”.

    It is found that steam of 7 bar(g) and 170 °C is used to supply a major part of the heat demand, sometimes even heat demands of low temperatures. Such demands would be more efficient to supply by district heating. Alternatively, a new utility with temperatures 40/120 °C could be introduced, either within the total site, or only within the biggest of the industries. The practical heat recovery potential is about 15 MW for the total site, and about 10 MW at the biggest of the industries.

    For all alternatives, steam capacity is released, which for example could be used for increased industrial production without investments in new steam boilers. Alternatively, the released capacity could be used to completely (or partially) offset the steam requirements of a new process plant at the Domsjö site.

    Fulltekst (pdf)
    FULLTEXT01
  • 9.
    Klugman, Sofia
    et al.
    IVL Svenska Miljöinstitutet.
    Nilsson, Johanna
    IVL Svenska Miljöinstitutet.
    Hackl, Roman
    IVL Svenska Miljöinstitutet.
    Holmgren, Kristina
    IVL Svenska Miljöinstitutet.
    Harvey, Simon
    Energy Integration of Domsjö Biorefinery Cluster - Summary2019Rapport (Annet vitenskapelig)
    Abstract [en]

    Within the Domsjö Biorefinery cluster in Örnsköldsvik, all the industries are cooperating regarding energy. The cluster consists of one wood pulp production facility, two bio-chemical facilities and one energy facility.

    In this study, we have analysed how efficient the steam is used within the industries. Are steam of right pressure and temperature used for the right purposes? To what extent could steam be replaced by district heating? And, how big is the potential to use simultaneous heat and cold demand for energy integration? The method for energy analysis was “pinch analysis”.

    It is found that steam of 7 bar(g) and 170 °C is used to supply a major part of the heat demand, sometimes even heat demands of low temperatures. Such demands would be more efficient to supply by district heating. Alternatively, a new utility with temperatures 40/120 °C could be introduced, either within the total site, or only within the biggest of the industries. The practical heat recovery potential is about 15 MW for the total site, and about 10 MW at the biggest of the industries.

    For all alternatives, steam capacity is released, which for example could be used for increased industrial production without investments in new steam boilers. Alternatively, the released capacity could be used to completely (or partially) offset the steam requirements of a new process plant at the Domsjö site.

    Fulltekst (pdf)
    FULLTEXT01
  • 10.
    Klugman, Sofia
    et al.
    IVL Svenska Miljöinstitutet.
    Stripple, Håkan
    IVL Svenska Miljöinstitutet.
    Lönnqvist, Tomas
    IVL Svenska Miljöinstitutet.
    A climate neutral Swedish industry – An inventory of technologies2019Rapport (Annet vitenskapelig)
    Abstract [en]

    In year 2017, about 27 percent of the greenhouse gas emissions in Sweden originated from the industries. This equals to 17,203 thousand tonnes carbon dioxide equivalents. Within the Swedish industry, the four industrial sectors with the largest climate gas release are Iron and steel, Cement, Refineries and Chemicals. This report focuses on these four sectors which together emit 80 percent of the industrial greenhouse gas emissions in Sweden. Each of these sectors have several possible pathways to become climate neutral. In this report some possible pathways are described and discussed.

    In order to reach climate neutrality, transformative changes such as new processes and use of new raw material are needed. This is because a vast part of the emissions in all the sectors in question originates from the processes themselves or the use of fossil feedstock, not only from energy use. Many of the options are technically immature and there are many years of development left before they could be implemented in large scale.

    Several technical challenges exist which are related to the processes, but in addition, there are several barriers of non-technical nature for the transformation. For example, supply and price of raw materials, uncertain market for new products and even some legal barriers. Furthermore, some of the options require development of infrastructure, for example the electrification of steel and cement production demands strengthening of the electric grids and increased production of renewable electricity.

    Fulltekst (pdf)
    FULLTEXT01
  • 11.
    Lygnerud, Kristina
    et al.
    IVL Svenska Miljöinstitutet.
    Klugman, Sofia
    IVL Svenska Miljöinstitutet.
    Fransson, Nathalie
    IVL Svenska Miljöinstitutet.
    Nilsson, Johanna
    Risk assessment of industrial excess heat collaborations – Empirical data from new and ongoing installations2022Inngår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 255, s. 124452-124452, artikkel-id 124452Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Excess heat could meet approximately 25% of the heat demand in the European building sector. However, the recovery of excess heat is low, which has been attributed to financial, technical and organisational barriers. There is limited information on the perceived risk exposure of excess heat recovery at different points in time, before undertaking the investment or after having undertaken the investment, and at locations with existing district heating networks or not (greenfield). This is unfortunate because experience can enable new collaborations. In this paper, we compare the perceived risk exposure of four greenfield and two ongoing industrial excess heat recovery collaborations.

    In doing so, we confirm previously identified barriers, such as difficulty to agree on the value of excess heat, the risk of a single heat source and lack of regulation. We also find that, with experience, changes to the excess heat-generating processes are increasingly important, whereas, greenfield sites find the lack of ‘know-how’ to be risky. However, the main conclusion from this paper is that the risks of industrial excess heat recovery collaborations appear to be over-emphasised. In fact, risk exposure of industrial activity can be reduced through industrial waste heat recovery as excess heat is characterized by limited price fluctuations and new environmental requirements from customers and authorities can be met proactively. Combining experience with a standardised excess heat recovery policy should significantly reduce the risk exposure of new collaborations.

  • 12.
    Nyberg, Theo
    et al.
    IVL Svenska Miljöinstitutet.
    Klugman, Sofia
    IVL Svenska Miljöinstitutet.
    Särnbratt, Mirjam
    IVL Svenska Miljöinstitutet.
    Nojpanya, Pavinee
    IVL Svenska Miljöinstitutet.
    Hjort, Anders
    IVL Svenska Miljöinstitutet.
    Persson, Emelie
    IVL Svenska Miljöinstitutet.
    Fagerström, Anton
    IVL Svenska Miljöinstitutet.
    Lönnqvist, Tobias
    IVL Svenska Miljöinstitutet.
    Bioenergianläggning Otterbäcken2022Rapport (Fagfellevurdert)
    Abstract [sv]

    Transportsektorns efterfrågan på biodrivmedel ökar när klimatomställningen ska omsättas i praktik. Sverige har goda förutsättningar att producera dessa drivmedel och det finns flertalet orter runt om i landet där förutsättningarna för biodrivmedelsproduktion är goda. Gullspångs kommun har under de senaste tio åren fört en dialog med Västra Götalandsregionen om möjligheten att etablera en bioenergikombinatanläggning i Otterbäcken för att nyttja de goda förutsättningar som finns med tillgång på råvara samt goda logistiska förutsättningar med bland annat djuphamnen. I detta projekt har en utredning gjorts för att ta fram kommersiellt relevanta investeringskoncept för en bioenergikombinatanläggning i Otterbäcken, och resultaten pekar på intressanta förutsättningar för en anläggning för produktion av flytande biometan (Liquified biogas, LBG).

    Projektet har utgått från en äldre förstudie där förutsättningarna för en bioenergikombinat-anläggning som producerar torrefierad biomassa undersöktes. Kunskaperna från denna tidigare studie har kompletterats med nya kartläggningar av relevanta tekniker och lokala råvaror som kan ingå i ett investeringskoncept för en anläggning som producerar biodrivmedel som kan användas i befintliga tunga lastbilar. Kartläggningen omfattade sju olika tekniker som utifrån de uppdaterade kartläggningarna kondenserades ned till två investeringskoncept för djupare undersökning av investeringskoncept. Det ena konceptet var en anläggning för produktion av pyrolysolja från skogsrester och det andra konceptet var en anläggning för produktion av LBG, men på grund av en högre teknologisk mognadsgrad samt större intresse från referensgruppen för det senare konceptet (LBG) så fick detta ett större fokus i projektet.

    De två fördjupade investeringskoncepten inkluderade teknikbeskrivning, skiss på affärsmodell med hjälp av referensgruppen, ekonomisk bedömning av lönsamheten i investeringen samt en beräkning av klimatpåverkan för drivmedlet (endast för LBG-konceptet).

    Resultaten visar att det ser ut att finnas både råvaror för, teknik till och förutsättningar för en god ekonomi i en anläggning för produktion av LBG. Råvarusituationen behöver bekräftas genom kontakter med råvaruleverantörer, tekniken kan behöva viss utvärdering för att hitta etablerade teknikleverantörer med pålitlig teknik och de ekonomiska förutsättningarna är beroende av investerings- och produktionsstöd för att kunna vara kommersiellt intressanta. Trots dessa osäkerheter är den samlade bedömningen att det kan vara aktuellt för en aktör eller grupp av aktörer med intresse av att äga och driva en biogasanläggning att ta vid där projektet slutar för att på sikt gå vidare med en investering i en anläggning.

    Fulltekst (pdf)
    fulltext
  • 13.
    Wård Edvall, Sara
    et al.
    IVL Svenska Miljöinstitutet.
    Chi Johansson, Nina
    IVL Svenska Miljöinstitutet.
    Klugman, Sofia
    IVL Svenska Miljöinstitutet.
    Jusufovska, Sevda
    IVL Svenska Miljöinstitutet.
    Pelli, Aurora
    IVL Svenska Miljöinstitutet.
    Ågren, Karin
    IVL Svenska Miljöinstitutet.
    Faktaunderlag för Energiagenda i Västerbotten2023Rapport (Annet (populærvitenskap, debatt, mm))
    Abstract [sv]

    Rapporten beskriver Västerbottens energisystem utifrån nuläge, möjligheter och ny teknik. I arbetet framkom att kommande elbehovet främst är i kustlandet och det finns begränsningar i möjligheten att överföra elen dit. Planerad kraftproduktion ser inte ut att räcka till de nya elbehoven och de oljeprodukter som används går främst till transporter. Effektgapet som analyserats behöver lösas genom att produktionen stärks och att arbete med energieffektivisering, effektstyrning och lagring bedrivs. 

    Fulltekst (pdf)
    fulltext
1 - 13 of 13
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.44.0