IVL Swedish Environmental Research Institute

ivl.se
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Simon
    et al.
    IVL Swedish Environmental Research Institute.
    Gottfridsson, Marie
    IVL Swedish Environmental Research Institute.
    LCA of zinc phosphating and thin film pre-treatment2023Report (Other academic)
    Abstract [en]

    LCA of zinc phosphating and thin film pre-treatment.

    Download full text (pdf)
    fulltext
  • 2.
    Hallberg, Elisabet
    et al.
    IVL Swedish Environmental Research Institute.
    Andersson, Simon
    IVL Swedish Environmental Research Institute.
    Nellström, Maja
    IVL Swedish Environmental Research Institute.
    Life cycle assessment of closed loops for industrial plastic packaging2023Report (Other academic)
    Abstract [en]

    The project Closing the loop of industrial plastic aims to increase the circular use of materials from industrial plastic packaging through closed loop recycling. Within this project, a study has been made where the goal was to compare the climate change impact of four different scenarios for three case studies.

    The four main scenarios are Closed loop recycling, Closed and open loop recycling, Open loop recycling, and Incineration and the three case studies included in the study are Packaging made of expanded polystyrene (EPS), big bags made of polypropylene (PP) and film made of low-density polyethylene (LDPE).

    For all three case studies, the main conclusion is that the climate impact is lower for closed loop recycling than for all three alternatives mentioned above. Additionally, the study identifies the second-best option as a mix of Closed and open loop recycling, followed by Open loop recycling, and finally, Incineration.

    Download full text (pdf)
    Life cycle assessment of closed loops for industrial plastic packaging
  • 3. Ingemarsdotter, Emilia
    et al.
    Diener, Derek
    Andersson, Simon
    Jonasson, Christian
    Mellquist, Ann-Charlotte
    Nyström, Thomas
    Jamsin, Ella
    Balkenende, Ruud
    Quantifying the Net Environmental Impact of Using IoT to Support Circular Strategies—The Case of Heavy-Duty Truck Tires in Sweden2021In: Circular Economy and Sustainability, 2021, Vol. 1, no 2, p. 613-650Article in journal (Refereed)
    Abstract [en]

    The idea of leveraging the Internet of Things (IoT) to support strategies in line with the circular economy (CE) has been gaining traction in literature. However, previous work has predominantly focused on the opportunities that these technologies can bring, and few studies have critically assessed the environmental viability of the proposed strategies. In this study, we assess the net environmental impact of IoT-enabled circular strategies in the specific case of truck tires in the Swedish context, in order to gain insight into when and how it makes environmental sense to embed IoT hardware into products to support circular strategies. We quantify (1) the potential environmental savings in the different life cycle phases made possible through access to sensor data, and (2) the environmental impact from the added technology needed to provide and process the data. Life cycle assessment (LCA) is used to evaluate the difference in impact between the current state and an ‘IoT scenario’. We find that the IoT scenario gives a 4% lower weighted life cycle impact than the current state. Through sensitivity analysis, we show that the conclusions are sensitive to assumptions made about the expected benefits of adding IoT, which depend on the technological context as well as the current and IoT-induced behavior of stakeholders along the product life cycle. The results are also sensitive to assumptions about the environmental impact of the IoT hardware components, implying that design decisions at this level can be important for ensuring a net environmental impact reduction from IoT-enabled circular strategies.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf