IVL Swedish Environmental Research Institute

ivl.se
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Andersson, Sofia Lovisa
    et al.
    Andersson, Sofia
    Baresel, Christian
    IVL Swedish Environmental Research Institute.
    Eriksson, Mikael
    Fujikawa, Mayumi Narongin
    IVL Swedish Environmental Research Institute.
    Carranza Muno, Andrea
    IVL Swedish Environmental Research Institute.
    Yang, Jing-Jing
    IVL Swedish Environmental Research Institute.
    Bornold, Niclas
    IVL Swedish Environmental Research Institute.
    Karlsson, Jesper
    IVL Swedish Environmental Research Institute.
    Långtidsförsök med membranbioreaktor för förbättrad avloppsvattenrening i kombination med kompakt slambehandling2023Report (Other academic)
    Abstract [en]

    Henriksdal wastewater treatment plant (WWTP) in Stockholm is currently being extended and rebuilt for increased capacity (from 0.8 to 1.6 million PE) and enhanced treatment efficiency (6 mg TN/L, 0.20 mg TP/L, 5 mg BOD7/L).

    The reconstruction includes retrofitting of the existing conventional activated sludge (CAS) tanks with a new membrane bioreactor (MBR) process containing 1.6 million m2 of membrane area. It also includes extended pretreatment and a new treatment step for thickening of primary sludge. Digestion of thick sludge (~6 % TS) will be done at thermophilic conditions, unlike today’s mesophilic operation, with high organic load and relatively short retention time.

    To increase the knowledge of MBRs in Nordic conditions, Stockholm Vatten och Avfall (SVOA) and IVL Swedish Environmental Research Institute have conducted long-term MBR studies in pilot scale at the R&D-facility Hammarby Sjöstadsverk, located on the premises of the Henriksdal WWTP. The MBR-pilot was taken into operation in 2013 and was reconstructed to its current configuration in 2016. In 2017 the MBR pilot was supplemented with a sludge treatment line to study different aspects of sludge digestion. 

    During 2021, the MBR-pilot was operated at a fixed inflow of 4.1 m3/h, which is 37 % higher than the design average flow, with externally provided glycerol as well as internally produced VFA as carbon source for post-denitrification. Aluminum (PAX) was used instead of Ferric (PIX) as complement to Ferrous (FeSO4) for phosphorous precipitation. This was done to test the operational strategy for the first MBR line in Henriksdal WWTP. The average effluent concentration of nitrogen and phosphorus was 3.9 mg TN/L and 0.07 mg TP/L, respectively, which means that the effluent requirements were met also this year. To achieve this, 8.6 g Fe2+/m3 and 0.9 g Al3+/m3 was required.

    During flux enhancer trials a total of 17.8 g iron (Fe2+ + Fe3+)/m3 was added. The glycerol dose was equivalent to 17.3 g COD/m3 and for internally produced VFA the dose equivalent was 15.5 g COD/m3. The slightly higher consumption of phosphorus precipitation chemicals compared to 2020, 1.29 mole metal per mole of phosphorus removed, was mainly due to a lower enhanced biological phospho¬rus removal (EBPR) activity in 2021. In 2021 the phosphorous release rates were low during the spring and showed < 1 g PO4-P/kg VSS,h in June but recovered in the summer with 5.5 g PO4-P/kg VSS,h in July after the defoaming agent dosing was stopped.

    The iron and aluminum content in the activated sludge was 6.2 and 0.7 %, respectively. Average total sludge age during 2021 was 17.2 days and average aerated sludge age was 7 days. Nitrification was always complete with ammonia concentrations below 2 mg/L except week 25. Test with use of internally produced VFA as carbon source showed that the specific COD consumption was almost the same as for glycerol when comparing the yearly average from 2021 and 2020. Effluent nitrate and total nitrogen removal was similar during the trial with VFA as the rest of the year, when glycerol was used.

     Like previous years, the membranes in membrane tank 1 (MT1) was cleaned with oxalic acid and the membranes in MT2 with citric acid. Both membranes were also cleaned with sodium hypochlorite. The membranes were operated with an average net flux around 21 to 25 L/(m2·h) but starting from week 25, the flux was increased to 30 L/(m2·h) which is the design net max flux of the full scale MBR in Henriksdal and was tested in the pilot for 25 weeks.

    The net TMP varied between 49 and 218 mbar for MT1 and between 51 and 146 mbar for MT2. TMP was reduced after each recovery cleaning (RC) with hypochlorite, but the effect did not last long. The permeability was generally above 200 L/(m2·h·bar) throughout 2021-2022 for both membranes. Recovery cleanings were done twice with hypochlorite and once with acids during 2021. During 2022 a final RC, first with hypochlorite then with acids was carried out.

    The first RC for MT1 resulted in a clear increase in permeability after cleaning. For MT2 the major increase in permeability was the result of a citric acid MC (one week after the hypochlorite RC). The RCs at the end of 2021 and in March 2022 had clear but smaller positive impact on permeability. Prior to the first RCs, permeability was higher for MT1 (cleaned with oxalic acid) compared to MT2 (cleaned with citric acid). After the first RCs, both membranes had similar permeability. As a result of the tough operational strategy from week 25 2021, permeability decreased quite quickly after RCs. MT2 reached a stable level around 250-300 L/(m2·h·bar) while MT1 decreased even more, to as low as around 200 L/(m2·h·bar). 

    Emission of chlorinated compounds in the off-gas ventilation were measured during the final sodium hypochlorite recovery cleaning. The emission process was slower than expected and generally no clear sign of attenuation of emissions was observed during the 21 hours of sampling. Although composite samples of several hours during the night are not providing enough details, it was concluded that the emissions can be harmful during the entire RC process from an exposure perspective. Trichloramine peaked at 36 times the recommended limit, chlorine gas at 73 % of the short-term exposure limit (15 min exposure), and chloroform at 9 % of the occupational exposure limit (8-hour workday average).To follow up previous measurements of greenhouse gases nitrous oxide (N2O) and methane (CH4), a new campaign was performed during several months in 2021. Generally, emissions observed in 2021 were significantly higher than in previous campaigns in the pilot and especially high N2O-emissions from the membrane-tank could be identified.

    No clear reason could be identified but the increased incoming load with a maintained effluent quality and a “better” sampling setup may partly be an explanation.In collaboration with Kemira, tests with a flux enhancer product were performed in 2021. However, no obvious positive or negative change in permeability due to dosing of flux enhancer was possible to identify based on continuously monitored process parameters and commonly observed variations in permeability and effect of membrane cleaning.  As the formation of foam is a common phenomenon in MBR plants, tests with an antifoaming agent were done by dosing in batches and continuously to the biological treatment during the period of heavy foaming (March-June).

    Even if foaming was not avoided, a good reduction and control of foaming could be achieved. An optimal effect was achieved with continuous dosages of > 10 ppm. However, even though the product has shown to have a positive effect in the MBR-pilot, a permanent use in full-scale may not be economically feasible due to the high consumption.Test with a reduced RAS flow from the design value of 4×Qin to 2×Qin was done with the aim to reduce energy consumption for pumping. A reduced RAS flow would however imply an increased sludge concentration in the membrane tanks, which may have negative effects on the membrane performance with more clogging and consequently increased aeration for membrane scouring and need for more frequent membrane cleaning.

    However, no negative effects of the reduced RAS-flow could be seen on the membrane performance.    During 2021, tests with a transition from mesophilic to thermophilic anaerobic digestion, dewatering of digested sludge after mesophilic and thermophilic digestion, and thermophilic digestion at high organic loading rate (OLR) and low hydraulic retention time (HRT) were performed in the sludge pilot. Results show that the transition from mesophilic to thermophilic digestion can be done without any major problems if the load was reduced during the most critical temperatures and that stable operation was achieved after 10-12 days. Evaluating the dewatering of mesophilically and thermophilically digested sludge was more difficult and no clear differences could be observed. However, it was concluded that used methods for determining dewaterability or optimal polymer dose are not reliable.

    Trials with high organic loading rate at thermophilic digestion showed that the digester performance could be maintained up to an OLR of around 4 kg VS/m3, d and an HRT of 12 d. When the load is further increased and HRT decreased, the performance in terms of VS reduction and biogas-/methane production decreased although the reactor operation was still stable.   The overall resource consumption in the pilot showed that the consumption of glycerol was the same as for the future Henriksdal design, even though the nitrogen load in the pilot was 21 % higher and the average effluent total nitrogen concentration was 3.9 mg TN/L compared to the design of 6 mg TN/L.

    Also, the iron/metal consumption was 73 % of the future Henriksdal design, although the phosphorus load to the pilot was about 50 % higher compared to design values and effluent phosphate concentrations were below the target concentration. This is mainly explained by the EBPR activity in the pilot. Also, the consumption of cleaning chemicals was lower than the future Henriksdal design although the inflow to the pilot was 30 % higher than design.

    Download full text (pdf)
    pH2040 årsrapport 2021 2022
  • 2.
    Andersson, Sofia Lovisa
    et al.
    IVL Swedish Environmental Research Institute.
    Westling, Klara
    Andersson, Sofia
    Karlsson, Jesper
    IVL Swedish Environmental Research Institute.
    Narongin, Mayumi
    IVL Swedish Environmental Research Institute.
    Carranza Munoz, Andrea
    IVL Swedish Environmental Research Institute.
    Bornold, Niclas
    IVL Swedish Environmental Research Institute.
    Baresel, Christian
    IVL Swedish Environmental Research Institute.
    Long term trials with membrane bioreactor for enhanced wastewater treatment coupled with compact sludge treatment -pilot Henriksdal 2040, results from 20202021Report (Other academic)
    Abstract [en]

    Stockholm’s wastewater treatment plant (WWTP) in is currently retrofitting from a conventional activated sludge process to a new membrane bioreactor (MBR) process. It also includes new treatment steps for sludge handling. Stockholm Vatten och Avfall (SVOA) and IVL have since 2014 conducted long-term MBR studies in pilot scale at the R&D facility Hammarby Sjöstadsverk. This report present results from the pilot operation during 2020. 

    The MBR-pilot was continuously operated at a higher inflow than the design average flow. The average effluent concentration of nitrogen and phosphorus met the effluent requirements of the future WWTP also this year. A low consumption of phosphorus precipitation chemicals could be achieved mainly due to a high Bio-P activity. The pilot showed that glycerol can be a good temporary carbon source at Henriksdal WWTP during startup. 

    Like previous years, the membranes in membrane tank 1 (MT1) was cleaned with oxalic acid and the membranes in MT2 with citric acid. Several tests to optimize the chemical consumption for membrane cleaning were performed. Recovery cleanings (RC) of the membranes were performed twice in 2020.

    In the sludge pilot, a thermophilic and a mesophilic hydraulic retention time (HRT) crash test showed stable performance down to 4 days HRT. 

    The overall resource consumption in the pilot showed that the optimization of phosphorus precipitation and membrane cleaning chemicals resulted in a significantly lower dosing than design values for the future Henriksdal WWTP. 

    Download full text (pdf)
    fulltext
  • 3.
    Andersson, Sofia Lovisa
    et al.
    IVL Swedish Environmental Research Institute.
    Westling, Klara
    IVL Swedish Environmental Research Institute.
    Karlsson, Jesper
    IVL Swedish Environmental Research Institute.
    Narongin, Mayumi
    IVL Swedish Environmental Research Institute.
    Carranza Munoz, Andrea
    IVL Swedish Environmental Research Institute.
    Long term trials with membrane bioreactor for enhanced wastewater treatment coupled with compact sludge treatment - pilot Henriksdal 2040, results from 20192021Report (Other academic)
    Abstract [en]

    Henriksdal wastewater treatment plant in Stockholm is currently being extended and rebuilt for increased capacity and enhanced treatment efficiency. The new process configuration at the Henriksdal WWTP has been designed for a capacity of 1.6 million population equivalents which is about twice as much as today. The reconstruction will include retrofitting of the existing conventional activated sludge tanks with a new membrane bioreactor process containing 1.6 million m2 of membrane area.

    To increase the knowledge on membrane technology for wastewater treatment in Nordic conditions, long-term MBR pilot scale studies are conducted, since 2013, at the R&D facility Hammarby Sjöstadsverk in Stockholm.

    Results from previous years have verified that the process is able to treat a hydraulic load equivalent to the design load, and a nutrient load greater than the design load, to effluent concentrations below the future discharge limits. In addition, the function and resilience of the membrane design have been verified.

    During 2019, a large focus was put on digester transition from mesophilic to thermophilic condition, increased efficiency in membrane operation, membrane cleaning, phosphorus removal, testing of external carbon sources, reducing HRT in the digester and mapping of micro pollutants in the system.

    Download full text (pdf)
    FULLTEXT01
  • 4.
    Baresel, Christian
    et al.
    IVL Swedish Environmental Research Institute.
    Bornold, Niclas
    IVL Swedish Environmental Research Institute.
    Rahmberg, Magnus
    IVL Swedish Environmental Research Institute.
    Malovanyy, Andriy
    IVL Swedish Environmental Research Institute.
    Lindblom, Erik
    IVL Swedish Environmental Research Institute.
    Carranza Munoz, Andrea
    IVL Swedish Environmental Research Institute.
    Resultat från FoU-samarbete Syvab-IVL2023Report (Other academic)
    Abstract [sv]

    Dagens reningsverk står inför flera utmaningar såsom ökad belastning, skärpta reningskrav, ett förändrat klimat, krav på ökad resurseffektivitet, en mer hållbar slamhantering och minskad miljöpåverkan från verksamheten.

    I en strävan att nå mer hållbara lösningar för avloppsvattenrening och slamhantering har IVL Svenska Miljöinstitutet och Syvab haft ett långsiktigt forskningssamarbete. Under 2022 har olika aktiviteter inom områdena resursförbrukning, miljöpåverkan, slamhantering och processoptimering genomförts. Några av de aktiviteter som redovisas i denna rapport är fortfarande under genomförande och fortsätter även under 2023.  Några resultat från 2022 års arbete är följande:

    Långtidspilottester med teknikkombinationen av Syvabs framtida MBR-process och två parallella 2-stegs filter med granulerat aktivt kol (GAK) för rening av läkemedelsrester och PFAS visar en fortsatt bra reningseffektivitet även om en förväntat avtagande effekt med ökade antal behandlade bäddvolymer observerats. tt kolbyte har fortfarande inte behövts efter ca 2,5 år av drift (vid ca 70 000 behandlade bäddvolymer i de enstaka GAK-filtren). Jämfört med det befintliga principförslaget så visar pilottesterna att signifikanta resurs- och kostnadsbesparingar kan åstadkommas om resultaten från pilotförsöken läggs till grund för en framtida fullskaleimplementering.Utvärderingen av övervaknings- och styrningsmöjligheter av GAK-filtren med hjälp av UVA eller DOC indikerar att en övervakning av reningen baserat på endast dessa parameter inte kommer räcka till.

    Pilottester med en kombination av pulveriserat aktivt kol (PAK) och MBR-processen visar en mycket effektiv borttagning av studerade läkemedelsrester med >80 % redan vid en PAK-dos på ca 15 mg/l. Även PFOS renas bort effektivt med en avskiljning >98 %. Jämfört med teknikkombinationen MBR-GAK kan PAK-MBR alternativet ge ytterligare resursbesparingar samtidigt som andra utmaningar som slampåverkan p.g.a. PAK-tillsats behöver beaktas.

    En implementering av SIMBA#-processmodellen för MBR-piloten och utvärdering av återkommande nitrifikationshämningar i fullskaleanläggningen med hjälp av dataanalys visar potential för dessa verktyg som möjlig användning i framtiden.

    Download full text (pdf)
    Resultat från FoU-samarbete Syvab-IVL
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf