IVL Svenska Miljöinstitutet

ivl.se
Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Hansen, Karin
    IVL Svenska Miljöinstitutet.
    Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests2016Ingår i: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, s. 5567–5585.-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish consistent trends in soil solution DOC, whereas increasing concentrations in European surface waters over the past decades appear to be the norm, possibly as a result of recovery from acidification. The objectives of this study were therefore to understand the long-term trends of soil solution DOC from a large number of European forests (ICP Forests Level II plots) and determine their main physicochemical and biological controls.

    We applied trend analysis at two levels: (1) to the entire European dataset and (2) to the individual time series and related trends with plot characteristics, i.e., soil and vegetation properties, soil solution chemistry and atmospheric deposition loads. Analyses of the entire dataset showed an overall increasing trend in DOC concentrations in the organic layers, but, at individual plots and depths, there was no clear overall trend in soil solution DOC. The rate change in soil solution DOC ranged between -16.8 and +23%yr-1 (median = +0.4%yr-1) across Europe. The non-significant trends (40%) outnumbered the increasing (35%) and decreasing trends (25%) across the 97 ICP Forests Level II sites.

    By means of multivariate statistics, we found increasing trends in DOC concentrations with increasing mean nitrate (NO3- deposition and increasing trends in DOC concentrations with decreasing mean sulfate (SO42- deposition, with the magnitude of these relationships depending on plot deposition history. While the attribution of increasing trends in DOC to the reduction of SO42- deposition could be confirmed in low to medium N deposition areas, in agreement with observations in surface waters, this was not the case in high N deposition areas. In conclusion, long-term trends of soil solution DOC reflected the interactions between controls acting at local (soil and vegetation properties) and regional (atmospheric deposition of SO42- and inorganic N scales).

  • 2.
    Kronnäs, Veronika
    et al.
    IVL Svenska Miljöinstitutet.
    Lucander, Klas
    Zanchi, Giuliana
    Stadlinger, Nadja
    Belyazid, Salim
    Akselsson, Cecilia
    Effect of droughts and climate change on future soil weathering rates in Sweden2023Ingår i: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 20, nr 10, s. 1879-1899Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In a future warmer climate, extremely dry, warm summers might become more common. Soil weathering is affected by temperature and precipitation, and climate change and droughts can therefore affect soil chemistry and plant nutrition. In this study, climate change and drought effects on soil weathering rates and release of Ca, Mg, K and Na were studied on seven forest sites across different climates in Sweden, using the dynamical model ForSAFE.

    Two climate scenarios were run, one medium severity climate change scenario from IPCC (A1B) and one scenario where a future drought period of 5 years was added, while everything else was equal to the first scenario. The model results show a large geographical variation of weathering rates for the sites, without any geographical gradient, despite the strong dependence of temperature on weathering and the strong gradient in temperature in Sweden. This is because soil texture and mineralogy have strong effects on weathering.

    The weathering rates have a pronounced seasonal dynamic. Weathering rates are low during winters and generally high, but variable, during summers, depending on soil moisture and temperature. According to the model runs, the future yearly average weathering rates will increase by 5 %–17 % per degree of warming. The relative increase is largest in the two southeastern sites, with low total weathering rates. At sites in southern Sweden, future weathering increase occurs throughout the year according to the modelling.

    In the north, the increase in weathering during winters is almost negligible, despite larger temperature increases than in other regions or seasons (5.9 ∘C increase in winter in Högbränna; the yearly average temperature increase for all sites is 3.7 ∘C), as the winter temperatures still will mostly be below zero. The drought scenario has the strongest effect in southern Sweden, where weathering during the later parts of the drought summers decreases to typical winter weathering rates.

    Soil texture and amount of gravel also influence how fast the weathering decreases during drought and how fast the soil rewets and reaches normal weathering rates after the drought. The coarsest of the modelled soils dries out and rewets quicker than the less coarse of the modelled soils. In the north, the soils do not dry out as much as in the south, despite the low precipitation, due to lower evapotranspiration, and in the northernmost site, weathering is not much affected. Yearly weathering during the drought years relative to the same years in the A1B scenario are between 78 % and 96 % for the sites.

    The study shows that it is crucial to take seasonal climate variations and soil texture into account when assessing the effects of a changed climate on weathering rates and plant nutrient availability.

  • 3.
    Moldan, Filip
    et al.
    IVL Svenska Miljöinstitutet.
    J. Cheng, Susan
    G. Hess, Peter
    R. Wieder, William
    Quinn Thomas, R.
    J. Nadelhoffer, Knute
    Vira, Julius
    L. Lombardozzi, Danica
    Gundersen, Per
    J. Fernandez, Ivan
    Schleppi, Patrick
    Gruselle, Marie-Cécile
    L. Goodale, Christine
    Decadal fates and impacts of nitrogen additions on temperate forest carbon storage: a data–model comparison2019Ingår i: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189Artikel i tidskrift (Refereegranskat)
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf